Стандарт организации СРО НП «МОД «СОЮЗДОРСТРОЙ»

Автомобильные дороги

УСТРОЙСТВО, РЕКОНСТРУКЦИЯ И КАПИТАЛЬНЫЙ РЕМОНТ ВОДОПРОПУСКНЫХ ТРУБ

Часть 3
Трубы металлические. Устройство
и реконструкция

СТО НОСТРОЙ 2.25.101 – 2013 (СТО 60452903 СОЮЗДОРСТРОЙ 2.1.1.4.3.03 – 2013)

ИЗДАНИЕ ОФИЦИАЛЬНОЕ

Москва 2013

Выписка из ПРО Очерелног	ТОКОЛА № _ го (годового) об			года
Саморегулируемой	,	_		ерства
	иональное объ			сретви
	«СОЮЗДОІ	РСТРОЙ»		
г. Москва		<u> </u>	_ >>	2014 года
	ПОВЕСТІ			
Очередного (годовог организации Неком объединені	ПОБЕСТГ о) общего собр имерческого па ие дорожников	ка дпи ания членов (артнерства «М в «СОЮЗДОР	Саморегул Межрегион РСТРОЙ»	ируемой альное
/ Утверждение Станда	ртов Саморегул	тируемой орга	низашии	
Некоммерческое партнер				пожников
«СОЮЗДОРСТРОЙ»;	orac with orac		удинание де	Розились
, ,				
ПО ВОПР Саморегулируемой «Межрегиональное объед	РОСУ ПОВЕС организации динение дорожі	ГКИ ДНЯ: Ут Некоммерч ников «СОЮЗ	гверждение веское ДОРСТРОЙ	Стандартов партнерство 1».
СЛУШАЛИ Хвоинско инициативных професси принята Советом Нацистандартизации НОСТР рекомендаций, необхо реализации Приказа Мистандартов и рекомендаци (Приложение). Документы рекомерегулированию при «СОЮЗДОРСТРОЙ» (П	иональных сооб ионального об ОЙ, в котору димых самор инрегиона Рос ций выносится ндованы для пр Совете П	бществ и СРО бъединения с ю входят бол регулируемым сии от 30.12 на рассмотрен ринятия Комиг артнерства	О была раз строителей лее 200 ст с организа .2009 г. № ние Общим тетом по те СРО Н	вработана и Программа гандартов и для 2 624, Собранием схническому П «МОД
В целях повыш Хвоинский Л.А. предлож (Приложение) в качество утвердить «метод прямо по видам применения, об саморегулируемых орган Голосовали: За — голосов, протиг Решение принято.	кил принять ст е стандартов и ого применения формлению и о пизациях (Письм	андарты и рен рекомендаций » в соответст бозначению с ио №02-1797/1	комендации Партнерствии с Рекоттандартов На 12 от 25.09.1	НОСТРОЙ гва, а также мендациями НОСТРОЙ в

Стандарт организации

Автомобильные дороги

УСТРОЙСТВО, РЕКОНСТРУКЦИЯ И КАПИТАЛЬНЫЙ РЕМОНТ ВОДОПРОПУСКНЫХ ТРУБ

Часть 3

Трубы металлические. Устройство и реконструкция

СТО НОСТРОЙ 2.25.101-2013 (СТО 60452903 СОЮЗДОРСТРОЙ 2.1.1.4.3.03 – 2013)

Издание официальное

Саморегулируемая организация некоммерческое партнерство «Межрегиональное объединение дорожников «СОЮЗДОРСТРОЙ»

Общество с ограниченной ответственностью Издательство «БСТ»

Предисловие

1 РАЗРАБОТАН Саморегулируемой организацией

некоммерческое партнерство

«Межрегиональное объединение дорожников

«СОЮЗДОРСТРОЙ»

2 ПРЕДСТАВЛЕН НА Комитетом по транспортному строительству

УТВЕРЖДЕНИЕ Национального объединения строителей,

протокол от 18 июня 2013 г. № 17

3 УТВЕРЖДЕН И Решением Совета Национального объединения

ВВЕДЕН В строителей, протокол от 24 июня 2013 г. № 43

ДЕЙСТВИЕ

4 ВВЕДЕН ВПЕРВЫЕ

© Национальное объединение строителей, 2013 © НП «МОД «СОЮЗДОРСТРОЙ», 2013

Распространение настоящего стандарта осуществляется в соответствии с действующим законодательством и с соблюдением правил, установленных Национальным объединением строителей

Содержание

Введение
1 Область применения 1
2 Нормативные ссылки 1
3 Термины и определения
4 Требования к материалам и изделиям 6
4.1 Требования к металлическим конструкциям водопропускных труб 6
4.2 Требования к материалам основания и обратной засыпки
4.3 Требования к материалу защитного покрытия металлических
водопропускных труб
4.4 Требования к материалам оголовков и лотков труб
5 Транспортирование и складирование элементов труб11
6 Технология устройства металлических водопропускных труб
6.1 Общие положения
6.2 Геодезические и разбивочные работы
6.3 Устройство котлованов, противофильтрационных экранов и подготовка
оснований13
6.4 Монтаж металлических конструкций трубы
6.5 Устройство дополнительного защитного покрытия
6.6 Устройство грунтовой обоймы и засыпка металлических
водопропускных труб
6.7 Устройство лотков
6.8 Устройство оголовков, укрепление русла
6.9 Особенности устройства многоочковых труб и труб с сечением
отличным от круглого
6.10 Завершающие работы
7 Реконструкция металлических водопропускных труб33
7.1 Общие требования

СТО НОСТРОЙ 2.25.101-2013

7.2 Технологические и конструктивные особенности выполнения работ по
полной перестройке металлических водопропускных труб 34
7.3 Технологические и конструктивные особенности выполнения работ по
удлинению металлических водопропускных труб
8 Контроль выполнения работ при устройстве и реконструкции
металлических водопропускных труб
9 Требования к безопасному выполнению работ
Приложение А (справочное)_Основные параметры и размеры металлических
труб
Приложение Б (рекомендуемое) Перечень основных машин, механизмов и
инструмента для оснащения организации, строящей
металлические трубы51
Приложение В (обязательное) Определение влажности и плотности грунта 54
Приложение Г (обязательное) Технологическая последовательность и схемы
послойного уплотнения грунта засыпки металлических труб
58
Приложение Д (справочное) Схемы арочно-лотковых МГТ 60
Приложение Е (обязательное) Контролируемые параметры при устройстве и
реконструкции металлических водопропускных труб 61
Приложение Ж (обязательное) Правила безопасности при устройстве и
реконструкции металлических водопропускных труб 65
Библиография

Введение

Настоящий стандарт разработан в рамках Программы стандартизации Национального объединения строителей В соответствии c СТО НОСТРОЙ 1.1-2010 «Стандарты национального объединения Порядок разработки, утверждения, строителей. оформления, учета, изменения и отмены».

Стандарт разработан в комплексе взаимоувязанных стандартов «Автомобильные дороги. Устройство, реконструкция и капитальный ремонт водопропускных труб».

При разработке настоящего документа использовались результаты работ ОАО «СоюздорНИИ», ФГУП «РосдорНИИ», МАДИ (ГТУ). В Стандарте использованы положения зарубежных нормативных документов из банка переводов ФГУП «СТАНДАРТИНФОРМ», а также европейские нормы (EN) и нормы Республики Беларусь (СТБ).

Авторский коллектив: докт. техн. наук Э.К. Кузахметова (МИИТ), канд. техн. наук B.A. Шмелев, Ю.К.Кудимов (ООО «ФСК «МГЦ»), канд. техн. наук Л.Л.Заикина (МИИТ).

Сопровождение разработки настоящего стандарта осуществлялось специалистами: *А.В. Хвоинский, А.М. Шубин, А.С. Евтушенко* (СРО НП «МОД «СОЮЗДОРСТРОЙ»).

Работа выполнена под руководством докт. техн. наук, проф. B.B. Ушакова (МАДИ) и канд. техн. наук $\Pi.A.$ Хвоинского (СРО НП «МОД «СОЮЗДОРСТРОЙ»).

Автомобильные дороги

УСТРОЙСТВО, РЕКОНСТРУКУЦИЯ И КАПИТАЛЬНЫЙ РЕМОНТ ВОДОПРОПУСКНЫХ ТРУБ

Часть 3 Трубы металлические.

Устройство и реконструкция

Roads

CONSTRUCTION, RECONSTRUCTION AND MAJOR REPAIR OF WATER PIPES

Part 3. Metal pipes. Construction and reconstruction

1 Область применения

1.1 Настоящий стандарт распространяется на водопропускные металлические трубы на автомобильных дорогах во II – IV дорожно-климатических зонах страны и устанавливает требования к выполнению работ по их устройству и реконструкции открытым способом.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты и своды правил:

ГОСТ 9.307–89 Единая система защиты от коррозии и старения. Покрытия цинковые горячие. Общие требования и методы контроля

ГОСТ 380–2005 Сталь углеродистая обыкновенного качества. Марки ГОСТ 427–75 Линейки измерительные металлические. Технические условия

СТО НОСТРОЙ 2.25.101-2013

ГОСТ 1050–88 Прокат сортовой, калиброванный со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия

ГОСТ 3640-94 Цинк. Технические условия

ГОСТ 4543–71 Прокат из легированной конструкционной стали Технические условия

ГОСТ 5180–84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5631-79 Лак БТ-577 и краска БТ-177. Технические условия

ГОСТ 6356–75 Нефтепродукты. Метод определения температуры вспышки в закрытом тигле

ГОСТ 6617–76 Битумы нефтяные строительные. Технические условия ГОСТ 7502–98 Рулетки измерительные металлические. Технические условия

ГОСТ 7566–94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение

ГОСТ 7798–70 Болты с шестигранной головкой класса точности В. Конструкция и размеры

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8509-93 Уголки стальные горячекатаные равнополочные. Сортамент

ГОСТ 8736-93 Песок для строительных работ. Технические условия

ГОСТ 9128–2009 Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия

ГОСТ 10704–91 Трубы стальные электросварные прямошовные. Сортамент

ГОСТ 10705–80 Трубы стальные электросварные. Технические условия ГОСТ 15836–79 Мастика битумно-резиновая изоляционная. Технические условия

ГОСТ 18105–2010 Бетоны. Правила контроля и оценки прочности ГОСТ 18995.1–73 Продукты химические жидкие. Методы определения плотности

ГОСТ 18995.5–73 Продукты химические органические. Методы определения температуры кристаллизации

ГОСТ 20295–85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСТ 22245–90 Битумы нефтяные дорожные вязкие. Технические условия

ГОСТ 23735–79 Смеси песчано-гравийные для строительных работ. Технические условия

ГОСТ 24709–81 Эмали ЭП-140. Технические условия

ГОСТ 25366–82 Эмаль ЭП-5116. Технические условия

ГОСТ 25607–2009 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия

ГОСТ 28246–2006 Материалы лакокрасочные. Термины и определения ГОСТ 30693–2000 Мастики кровельные и гидроизоляционные. Общие

технические условия

ГОСТ Р 50277–92 Материалы геотекстильные. Метод определения поверхностной плотности

ГОСТ Р 52128–2003 Эмульсии битумные дорожные. Технические условия

ГОСТ Р 52129–2003 Порошок минеральный для асфальтобетонных и органоминеральных смесей. Технические условия

СП 28.13330.2012 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии»

СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы» СП 46.13330.2011 «СНиП 3.06.04-91 Мосты и трубы»

СТО НОСТРОЙ 2.25.99-2013 Автомобильные дороги. Устройство, реконструкция и капитальный ремонт водопропускных труб. Часть 1. Трубы бетонные и железобетонные. Устройство и реконструкция

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и сводов правил в информационной системе общего пользования — на официальных сайтах Национального органа Российской Федерации по стандартизации и НОСТРОЙ в сети Интернет или по ежегодно издаваемым информационным указателям, опубликованным по состоянию на 1 января текущего года. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться новым (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины в соответствии с СТО НОСТРОЙ 2.25.99, а также следующие термины с соответствующими определениями:

3.1 стык соединения элементов металлических труб: Способ соединения металлических листов.

Примечание – Соединение бывает внахлест, фланцевое, встык, в паз.

3.2 геосинтетические материалы (геосинтетики): Материалы, в которых хотя бы одна составная часть изготовлена из синтетических или натуральных полимеров, используемых в геотехнике в контакте с грунтом, для повышения технических характеристик грунтов или совместно с другими строительными материалами в качестве элементов различных строительных конструкций и сооружений.

Примечание — Наиболее часто из геосинтетиков применяются различные геотекстильные материалы и георешетки.

3.3 **грунтовая обойма**: Массив грунта, окружающий трубу, отсыпанный из дренирующего, тщательно уплотненного грунта,

ограниченный размерами, определенными для конкретного сооружения, предназначенный для восприятия сжимающих напряжений при работе под нагрузкой совместно с трубой.

- 3.4 **лог:** Эрозионная форма рельефа с длинными пологими склонами и сравнительно небольшим вырезом.
- 3.5 металлическая гофрированная труба, МГТ: Малое искусственное сооружение из металла, обработанного определенным способом, для пропуска воды.
- 3.6 **металлическая водопропускная труба**: Малое искусственное сооружение из металла для пропуска воды.

Примечание – Металлические водопропускные трубы различаются по форме поперечного сечения (круглые, овоидальные и др.) и по числу рабочих отверстий (одноочковые, многоочковые).

- 3.7 **основание металлической водопропускной трубы**: Подушка под телом трубы из гравийно-песчаной смеси или песка.
- 3.8 **отверстие водопропускной трубы**: Наибольший горизонтальный размер или сумма размеров (для многоочковых труб) тела трубы в свету.
- 3.9 противофильтрационный экран: Инженерное устройство (перемычка) из водонепроницаемых материалов на концах трубы для предотвращения подмыва основания трубы.
- 3.10 **пучинообразование**: Явление перераспределения влаги в земляном полотне, вызывающее увеличение зимой влажности грунтов земляного полотна, образование в них ледяных прослоек и увеличение объема грунта, при этом происходит взбугривание дорожной одежды с последующим размягчением при оттаивании.
- 3.11 **тип поперечного сечения**: Форма внутреннего сечения трубы: круглая, овоидальная, арочная, прямоугольная и арочно-лотковая.
- 3.12 трубы больших отверстий: Водопропускные сооружения, выполненные из круглых труб диаметром отверстия более трех метров, или

из труб, имеющих горизонтальный или вертикальный размер поперечного сечения отверстия более трех метров.

4 Требования к материалам и изделиям

4.1 Требования к металлическим конструкциям водопропускных труб

- 4.1.1 Основным видом вновь устраиваемых и реконструируемых металлических водопропускных труб являются металлические гофрированные трубы (МГТ).
- 4.1.2 На автомобильных дорогах IV V технических категорий в качестве конструкций водопропускных труб допускается применять стальные электросварные трубы по ГОСТ 10705 или по ГОСТ 20295.
- 4.1.3 По степени сборки допускается использовать следующие конструкции:
 - цельного изготовления цельносварные, цельновитые;
- сборные из отдельных секций, соединяемых между собой на стройплощадке при помощи сварки, фланцев, раструбов или муфт;
- из сборных элементов заводского изготовления в виде листов, изогнутых по типу поперечного сечения, соединяемых на месте работ специальными болтами сборные металлические гофрированные трубы.
- 4.1.4 Для изготовления элементов И секций металлических гофрированных водопропускных труб следует применять марки стали, соответствующие ПО хладностойкости климатическим условиям ИХ применения. Требования к маркам сталей по ОДМ 218.2.001-2009 (раздел 5) [1].
- 4.1.5 Болты, гайки и шайбы должны быть изготовлены из сталей марок 20, 30 и 35 по ГОСТ 1050. Допускается изготовление шайб из стали марки Ст3 по ГОСТ 380. Для условий эксплуатации в районах с температурой ниже

- минус 40 °C болты должны быть изготовлены из стали 35X и 38XA по ГОСТ 4543. Размеры болтов принимаются по ГОСТ 7798.
- 4.1.6 Основные требования к параметрам металла, параметрам металлических гофрированных элементов, а также допускаемые отклонения изготовленных элементов должны соответствовать требованиям ОДМ 218.2.001-2009 (раздел 5) [1].
- 4.1.6 Типы спиральновитых И основные размеры секций гофрированных труб приведены таблице A.1 металлических В (приложение А). Основные параметры и размеры элементов сборных МГТ приведены в А.2 (приложение А). Сортамент поставляемых электросварных труб должен соответствовать ГОСТ 10704.

4.2 Требования к материалам основания и обратной засыпке

- 4.2.1 Для устройства основания (подушки) под водопропускную трубу допускается применять следующие материалы:
 - пески средней крупности, крупные и очень крупные по ГОСТ 8736;
 - гравийно-песчаные смеси C3 C13 по ГОСТ 25607;
 - щебень и гравий фракций от 5 до 40 мм по ГОСТ 8267;
- щебеночно-галечниковые и дресвяно-гравийные грунты, не содержащие обломков размером более 50 мм.
- 4.2.2 Перечисленные материалы не должны содержать более 10 % частиц размером менее 0,1 мм, в том числе более 2 % глинистых размером менее 0,005 мм. Допускается применять пески мелкие, содержащие не более 10 % частиц размером менее 0,1 мм, в том числе не более 2 % глинистых размером менее 0,005 мм.
- 4.2.3 Для устройства грунтовой обоймы следует применять грунты по 4.2.1 4.2.2. Допускается отсыпка грунтовой обоймы из глинистых грунтов в районах, где исключается возможность интенсивного пучинообразования при наличии обоснования в проекте.

- 4.2.4 Для устройства обратной засыпки допускается применять грунты по 4.2.1 4.2.2, а также крупнообломочные грунты следующих фракционных составов:
 - фракция крупнее 10 мм должна составлять не менее 30 %;
 - фракция менее 0,1 мм должна составлять не более 10 %.

4.3 Требования к материалу защитного покрытия металлических водопропускных труб

- 4.3.1 Секции металлических водопропускных труб или их элементы должны поставляться с основным антикоррозионным защитным покрытием из цинка марки ЦЗ по ГОСТ 3640 с толщиной слоя от 85 до 200 мкм, выполненного по ГОСТ 9.307, нанесенного на внутреннюю и наружную поверхности элементов или секций труб.
- 4.3.2 Допускается применение стальных электросварных труб по ГОСТ 10705 или по ГОСТ 20295 без основного защитного покрытия (см. 4.1.2)
- 4.3.3 В качестве дополнительного антикоррозионного защитного покрытия конструкций труб и оголовков должны использоваться следующие битумные мастики:
- ненаполненные (пластбутилен, бутадиен, пластбутадиен) по ГОСТ 30693;
 - наполненные битумно-минеральные (битуминоли) по ГОСТ 30693;
- наполненные битумно-резиновые по ГОСТ 15836, а также полимерные лакокрасочные материалы:
 - эпоксидно-каучуковую краску по ТУ 2312-289-05765670-2002 [2];
 - эпоксидно-полиамидную эмаль по ГОСТ 24709;
- эпоксидно-каменноугольную эмаль и другие эпоксиднокаменноугольные лакокрасочные материалы по ГОСТ 25366.
- 4.3.4 Ненаполненные битумные мастики должны быть заводского изготовления.

4.3.5 Допускается приготовление наполненных битумно-резиновых и битумно-минеральных мастик в условиях притрассовых строительных предприятий (полигонов) при соблюдении технологии их приготовления и состава по ГОСТ 30693 (битуминоли) или по ГОСТ 15836 (битумнорезиновые мастики).

Состав, свойства, способы приготовления и методы испытания наполненных битумных мастик приведены в ВСН 176-78 (приложение 9) [3].

- 4.3.6 При устройстве лотков в трубах, в качестве дополнительного защитного покрытия труб допускается использовать полимерную мастику УТ-38Г по ТУ 38-105874-75 [4] холодного отверждения и битумно-бутилкаучуковую мастику горячего отверждения МББГ-70 по ТУ 14-6-83-72 [5].
- 4.3.7 Допускается по согласованию с Заказчиком применение других материалов защитных покрытий, отвечающих по своим свойствам требованиям, предъявляемым к защитным покрытиям для металлических труб по ВСН 176-78 (пункты 4.43 4.53) [3] и ОДМ 218.2001-2009 (приложение К) [1].

4.4 Требования к материалам оголовков и лотков труб

- 4.4.1 Для бетонных и железобетонных оголовков металлических водопропускных труб должны применяться бетон и арматура, соответствующие требованиям СП 46.13330 (глава 4) и СТО НОСТРОЙ 2.25.99 (раздел 4).
 - 4.4.2 Устройство лотков в водопропускных трубах допускается:
 - из сборных бетонных плит;
 - из монолитного бетона;
 - из сборных битумно-минеральных и битумно-полимерных плит;
 - из литых битумно-минеральных и битумно-полимерных материалов;
 - из сборных полимербетонных плит;
 - из монолитного полимербетона;
 - из асфальтобетона;

- из полименрных и полимерно-битумных материалов;
- из грунтов, укрепленных вяжущими.

Конкретный тип лотка должен определяться проектом.

- 4.4.3 Производство блоков лотков должно быть организовано в стационарных условиях на заводах или притрассовых производственных предприятиях, оборудованных необходимыми машинами.
- 4.4.4 Для изготовления сборных и монолитных бетонных лотков должен использоваться бетон класса ВЗ5 по ГОСТ 18105. Марка бетона лотка по морозостойкости должна быть не ниже F300. В состав бетона лотка должны входить заполнители крупностью не более 10 мм и морозостойкостью не ниже F300.

Примечание — В качестве заполнителя рекомендуется применять щебень или гравий из плотных горных пород по ГОСТ 8267.

Бетон лотка в трубах, пропускающих агрессивные воды, должен соответствовать требованиям СП 28.13330 (глава 5).

- 4.4.5 Для изготовления сборных или монолитных асфальтобетонных лотков допускается применять:
- битумы нефтяные дорожные вязкие марок БНД 40/60, БНД 60/90 и БНД 90/130 или БН 60/90 и БН 90/130 по ГОСТ 22245, а также строительные битумы марок IV и V по ГОСТ 6617 (только для изготовления блоков сборных лотков);
- пески природные нефракционированные и фракционированные по ГОСТ 8736 (крупные, средние или мелкие);
- минеральные порошки активированные и неактивированные из карбонатных горных пород по ГОСТ Р 52129.
- 4.4.6 Асфальтобетон, применяемый для устройства сборных и монолитных лотков, должен иметь следующие показатели по ГОСТ 9128:
 - остаточная пористость не более 2 % по объему;
 - водонасыщение не более 1 % по объему;
 - набухание не более 0,1 % по объему;

- предел прочности при сжатии при температуре плюс 20 °C не ниже 2,5 МПа;
 - морозостойкость наполнителей не ниже F300.

Асфальтобетон должен иметь следующий состав:

- гравелистый песок до 5 мм по ГОСТ 8736 от 80 % до 85 %;
- минеральный порошок по ГОСТ P 52129 от 15 % до 20 %;
- битум по ГОСТ 22245 от 9 % до 12 %.

5 Транспортирование и складирование элементов труб

- 5.1 Готовые секции металлических водопропускных труб допускается перевозить любым видом транспорта в горизонтальном положении с применением необходимых креплений и прокладок согласно схемам крепления завода-изготовителя.
- 5.2 Элементы сборных гофрированных труб должны перевозиться в пакетах весом не более 500 кг, болты и шайбы в ящиках весом не более 50 кг. При перевозке автомобильным транспортом пакеты следует укладывать в один ряд по высоте и фиксировать от смещения согласно схемам крепления. При перевозке железнодорожным транспортом пакеты следует укладывать не более чем в два ряда по высоте с фиксированием от смещения согласно схемам крепления.

При погрузке и разгрузке пакетов должны выполняться требования методических рекомендаций [6].

- 5.3 Погрузка и разгрузка секций труб и пакетов должна осуществляться краном соответствующей грузоподъемности со специальными мягкими стропами по РД 24-СЗК-01-01 [7] для исключения повреждения покрытия труб.
- 5.4 При хранении секции труб должны быть уложены по высоте не более чем в три ряда на деревянные подкладки и прокладки. В каждом ряду

крайние секции должны закрепляться клиньями. Допускается вкладывать трубы меньшего диаметра в трубы большего.

- 5.5 Блоки сборных бетонных или асфальтобетонных лотков должны подвозиться к месту укладки в контейнерах с полками. Полки в контейнерах должны быть устроены из плоских гофрированных листов, из профиля, соответствующего профилю блоков. Укладка блоков на полки контейнеров допускается в два ряда. Второй ряд блоков должен быть уложен плоской стороной вниз. При перемещении блоков в пределах полигона или строительной площадки их следует укладывать на гофрированные элементы трубы, совмещая профиль блока и элемента трубы. Запрещается укладка элементов трубы с блоками друг на друга в количестве более четырех.
- 5.6 Перевозка сборных бетонных конструкций оголовков и противофильтрационных экранов должна осуществляться в соответствии с требованиями, предъявляемыми к перевозке сборных бетонных и железобетонных конструкций водопропускных труб, по СТО НОСТРОЙ 2.25.99 (раздел 5).

6 Технология устройства металлических водопропускных труб

6.1 Общие положения

- 6.1.1 Устройство металлических водопропускных труб должно включать следующие этапы:
 - выполнение геодезических и разбивочных работ по 6.2;
- устройство котлованов, противофильтрационных экранов и подготовка оснований по 6.3;
 - монтаж металлических конструкций трубы по 6.4;
 - устройство дополнительного защитного покрытия по 6.5;
- устройство грунтовой обоймы и засыпка металлических водопропускных труб по 6.6;

- устройство лотков по 6.7;
- устройство оголовков, укрепление русла по 6.8;
- завершающие работы по 6.10.
- 6.1.2 Устройство многоочковых труб и труб с сечением, отличным от круглого, следует выполнять по 6.9.
- 6.1.3 Общие требования при выполнении строительно-монтажных работ по устройству и реконструкции водопропускных труб приведены в СТО НОСТРОЙ 2.25.99 (раздел 6).
- 6.1.4 Перечень машин, механизмов, оборудования и инструментов, применяемых при устройстве металлических водопропускных труб, приведены в приложении Б.

6.2 Геодезические и разбивочные работы

6.2.1 Общие требования к выполнению геодезических и разбивочных работ при выполнении строительно-монтажных работ по устройству и реконструкции водопропускных труб приведены в СТО НОСТРОЙ 2.25.99 (подраздел 7.2).

6.3 Устройство котлованов, противофильтрационных экранов и подготовка оснований

- 6.3.1 Основные требования к устройству котлованов и подготовке оснований приведены в СТО НОСТРОЙ 2.25.99 (подраздел 7.3).
- 6.3.2 Грунтовое основание под металлическую водопропускную трубу должно устраиваться по проекту из песчано-гравийной смеси по ГОСТ 23735. Допускается устройство основания из песка по ГОСТ 8736 при наличии обоснования в проекте.
- 6.3.3 Устройство основания под трубу допускается только в сухом котловане.
- 6.3.4 При устройстве основания на предварительно уплотненном дне котлована, уплотнение дна должно быть выполнено на ширину не менее одного диаметра в каждую сторону от наружной поверхности трубы. Расстояние между многоочковыми трубами должно быть не менее 1 метра

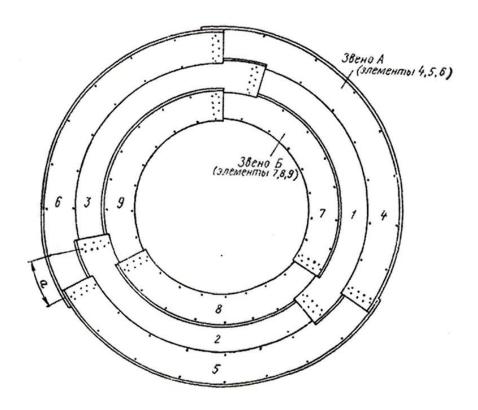
для труб диаметром до трех метров и не менее 2 м для остальных (см. ОДМ 218.2.001-2009 [1]).

Размеры котлована и основания должны быть указаны в проекте.

- 6.3.5 Песчано-гравийная смесь для устройства основания должна засыпаться непосредственно в котлован или на его бровку с последующим перемещением ее слоями в котлован бульдозером или погрузчиком. В котловане смесь должна разравниваться и уплотняться грунтоуплотняющими машинами. Толщина слоя и число проходов по одному следу должны назначаться по результатам пробного уплотнения в зависимости от характеристик уплотняющей техники и состава смеси. Плотность песчаных грунтов основания должна контролироваться с помощью прибора Ковалева (см. В.1, приложение В), щебеночно-галечных и дресвяно-гравийных методом лунки (см. В.2, приложение В).
- 6.3.6 Устройство основания под трубу должно выполняться по одному из следующих вариантов:
 - отсыпка на полную высоту по 6.3.7;
- отсыпка на часть высоты до уровня укладки трубы и досыпка на полную высоту после укладки трубы по 6.3.8.
- 6.3.7 При отсыпке основания на полную высоту должно быть устроено ложе трубы. Устройство ложа следует производить вырезкой автогрейдором с профилирующим ножом или экскаватором с последующей отделкой шаблоном. Шаблон следует устанавливать на направляющих брусьях, уложенных по нивелиру в соответствии с проектными отметками по обе стороны от трубы и плавно перемещать его вдоль оси трубы.
- 6.3.8 При устройстве верхней части основания после укладки трубы, песчано-гравийная смесь должна отсыпаться слоями толщиной не более 10 см с уплотнением трамбовками каждого слоя. Коэффициент уплотнения основания должен быть не менее 0,95.

- 6.3.9 При устройстве основания в зимнее время следует применять только сухой, несмерзшийся грунт и уплотнять его трамбующими машинами по мере отсыпки, не допуская смерзания грунта в рыхлом состоянии.
- 6.3.10 Котлованы под противофильтрационные экраны должны устраиваться одновременно с подготовкой котлована под отсыпку основания.

Из котлована должна быть откачена вода, основание экрана должно быть спланировано и уплотнено до коэффициента уплотнения не менее 0,95.


- 6.3.11 Экраны из глинощебня или цементогрунта должны устраиваться в соответствии с требованиями ВСН 40-88 [8] и рекомендациями ОДМ 218.2.001-2009 [1] путем засыпки в котлован грунтовой смеси слоями не более 20 см и уплотнением трамбовками.
- 6.3.12 Сборные железобетонные и бетонные противофильтрационные экраны необходимо монтировать до начала укладки трубы. Глубина заложения железобетонных и бетонных экранов должна быть не менее чем на 0,25 м ниже расчетной глубины сезонного промерзания грунта.
- 6.3.13 Работы по устройству котлованов, противофильтрационных экранов и оснований должны быть освидетельствованы с составлением актов на скрытые работы по форме, приведенной в СТО НОСТРОЙ 2.25.99 (приложение Ж).

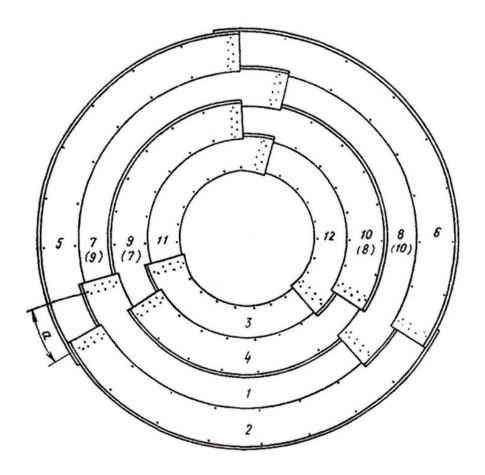
6.4 Монтаж металлических конструкций трубы

- 6.4.1 Монтаж металлических конструкций водопропускных труб допускается выполнять из предварительно собранных секций по 6.4.4 6.4.5, из секций заводского изготовления согласно 6.4.6 или из отдельных элементов по 6.4.7.
- 6.4.2 Монтаж металлических конструкций водопропускных труб необходимо выполнять в соответствии с монтажной схемой, указанной в проекте производства работ (далее ППР). Монтажная схема должна включать: порядок установки элементов при сборке и объединении секций, порядок перевозки секций, порядок установки болтов, схему специальных стяжек и подмостей.

- 6.4.3 Для монтажа металлических конструкций водопропускных труб следует использовать комплект инструментов, приведенный в Б.2 (приложение Б).
 - 6.4.4 Предварительная сборка секций из отдельных элементов.
- 6.4.4.1 Перед сборкой секций должны быть выполнены подготовительные работы: подготовлены пакеты с элементами секции трубы, окаймляющие уголки, ящики с крепежом, необходимый инструмент и оборудование. Элементы должны быть очижены от грязи, а в зимнее время от снега и льда.
- 6.4.4.2 В первую очередь необходимо собрать звенья в вертикальном положении, собираемые элементы должны быть установлены на ребро, с постановкой ограниченного числа болтов (от трех до четырех) в середине продольных стыков. При этом один торец элемента должен находиться на наружной поверхности звена, а другой на внутренней. Во втором ряду продольного стыка не должно быть отверстий на наружных гребнях волн, в правильно собранных звеньях труб все марки элементов должны быть видны.
- 6.4.4.3 Затем звенья необходимо последовательно устанавливать в горизонтальное положение на деревянные брусья, уложенные вдоль секций трубы так, чтобы продольные стыки в них были на одном уровне, а расположение нахлеста элементов в соединяемых звеньях строго одинаково.

Рекомендуемая последовательность установки элементов при сборке секций труб приведена на рисунке 1.

α – величина сдвижки продольных стыков;


цифрами показан порядок установки элементов при объединении звеньев A и Б Рисунок 1 — Схема последовательности сборки секций трубы из отдельных звеньев (вид с торца)

6.4.4.4 В секцию звенья должны объединяться стандартными элементами трубы. При установке этих элементов в местах стыковки трех листов не допускается соприкасание двух листов, входящих в одно звено. Для этого каждый соединительный элемент одним торцом необходимо вводить в зазор между элементами ранее собранных звеньев А и Б (см. рисунок 1).

6.4.4.5 При сборке секций и их объединении болты необходимо наживлять вначале в средних частях продольных и поперечных стыков. Остальные болты должны устанавливаться после объединения в секцию необходимого количества звеньев. Последними должны ставиться болты в местах соединения трех элементов. Затягивать болты следует

электрическими или пневматическими гайковертами, а также торцевыми и накидными гаечными ключами.

- 6.4.4.6 При сборке секций труб болты в продольных стыках необходимо ставить на расстоянии не менее 15 см от торцов концевых звеньев секции. Поставленные в концевых звеньях болты не должны затягиваться для облегчения постановки стандартных элементов с заведением их в зазоры продольных стыков между элементами торцевых звеньев.
- 6.4.5 Монтаж водопропускной трубы из предварительно собранных секций.
- 6.4.5.1 Перед началом работы необходимо выполнить подготовительные работы согласно 6.4.4.1.
- 6.4.5.2 Монтаж трубы должен производиться на спланированном основании или вблизи проектной оси трубы. Секции должны укладываться на деревянные брусья для обеспечения постановки болтов в нижней части.
- 6.4.5.3 Секции в проектное положение должны устанавливаться краном. При строповке секций должны применяться мягкие стропы, исключающие возможность повреждения защитного покрытия. Стропы должны размещаться на расстоянии четверти длины от их торцов.
- 6.4.5.4 Объединение секций следует производить согласно схеме, приведенной на рисунке 2. Вначале торцы секций должны быть установлены краном таким образом, чтобы продольные стыки были расположены на одном уровне. Затем устанавливаются соединительные элементы в соответствии с 6.4.4.4 6.4.4.5.

α – величина сдвижки продольных стыков;

цифрами показан порядок установки элементов при сборке трубы

Рисунок 2 – Монтажная схема сборки трубы из предварительно собранных секций (вид с торца)

- 6.4.6 Монтаж водопропускной трубы из секций заводского изготовления.
- 6.4.6.1 Монтаж труб из секций заводского изготовления рекомендуется производить без промежуточного складирования на стройплощадке.
- 6.4.6.2 При основании, спланированном без устройства ложа для труб диаметром до трех метров, допускается монтаж трубы рядом с проектной осью и последующая накатка в проектное положение.
- 6.4.6.3 При спрофилированном основании с устройством ложа секции трубы необходимо устанавливать краном в проектное положение и объединять на месте.

Секции должны укладываться на деревянные брусья для беспрепятственной постановки хомутов и болтовых соединений.

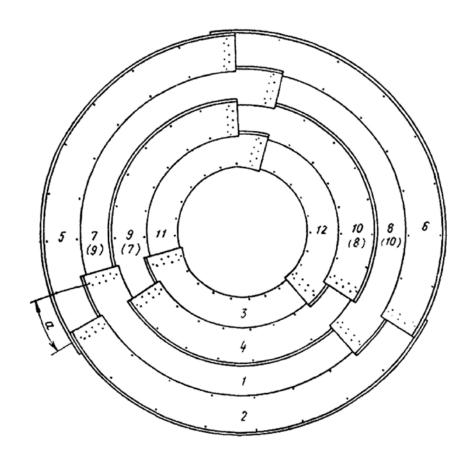
- 6.4.6.4 Объединение секций должно производиться в соответствии с ППР и рекомендациями завода-изготовителя.
- 6.4.7 Монтаж металлических конструкций водопропускных труб из отдельных элементов.

Примечание — Рекомендуется для труб с отверстием более трех метров и труб не замкнутого сечения.

- 6.4.7.1 Перед началом монтажа трубы должны быть выполнены подготовительные работы (см. 6.4.4.1).
- 6.4.7.2 Рядом с основанием трубы должна быть подготовлена ровная площадка или легкие деревянные подмости в соответствии с ППР.
 - 6.4.7.3 Сборка трубы должна осуществляться по одной из двух схем:
 - наращивание стандартными элементами по всему сечению трубы;
- первоначальный монтаж нижних элементов на всю длину трубы с наращиванием по высоте.
- 6.4.7.4 Наращивание стандартными элементами по всему сечению трубы должно производиться постепенно (см. рисунок 3).

Элементы к месту установки должны переноситься и удерживаться в необходимом положении специальными крюками по Б.2 (приложение Б).

Центровка отверстий в элементах для установки болтов должна осуществляться оправками, вставляемыми в отверстия, расположенные рядом с болтовыми отверстиями.


При установке элементов в местах нахлеста трех листов не допускается соприкасание двух листов, входящих в одно звено (см. 6.4.4.4).

Сборка должна производиться с установкой минимального количества болтов:

- вначале устанавливаются от двух до трех болтов на средних участках продольных и поперечных стыков;

- после этого производится стяжка в местах соединения трех элементов длинными монтажными болтами, которые затем заменяются обычными.

После наживления болтов в звене из элементов позиции 11 и 12 (см. рисунок 3) должна продолжиться сборка следующего участка трубы, а в звене из элементов позиции 5 и 6 должна производиться установка и затяжка всех болтов.

а – величина сдвижки продольных стыков;

цифрами показан порядок установки элементов при сборке трубы

Рисунок 3 – Монтажная схема сборки трубы из отдельных элементов (вид с торца)

6.4.7.5 Монтаж нижних элементов на всю длину трубы с наращиванием по высоте должен производиться в следующей очередности.

Первоначально должны выкладываться нижние элементы на всю длину трубы с объединением их болтами в средней части.

Затем должны устанавливаться по два других элемента звеньев через одно звено (см. рисунок 3, обозначения цифр в скобках).

Далее последовательно должны монтироваться оставшиеся элементы пропущенных звеньев.

Монтаж должен завершаться постановкой и затяжкой всех элементов. Между звеном, в котором затягиваются все болты, и собираемым звеном должно быть не менее трех звеньев с наживленными болтами.

6.4.8 Приемка смонтированных металлических конструкций водопропускной трубы должна быть оформлена актом скрытых работ согласно СТО НОСТРОЙ 2.25.99 (приложение Ж).

6.5 Устройство дополнительного защитного покрытия

- 6.5.1 Для дополнительной защиты металлических конструкций водопропускных труб следует применять битумные мастики ненаполненные или наполненные согласно требованиям 4.3, а также полимерные лакокрасочные материалы по ГОСТ 28246 или эмали по ГОСТ 24709, ГОСТ 25366.
- 6.5.2 От механических повреждений антикоррозийного покрытия при засыпке грунтом, в случаях предусмотренных проектом, должно применяться обертывание трубы геотекстильным материалом плотностью от 400 до 600 г/м2 по ГОСТ Р 50277.
- 6.5.3 Защитное покрытие из ненаполненных битумных мастик должно наноситься на элементы и секции труб в заводских условиях.
- 6.5.4 Защитное битумное покрытие с применением наполненных мастик (битумно-резиновых и битумно-минеральных) должно наноситься на металлические трубы после окончания их сборки на полностью готовую трубу, а при предварительной сборке секций на готовую секцию трубы. На месте монтажа трубы должны изолироваться только незащищенные концы секций, соединительные элементы и места покрытия, поврежденные при транспортировке.
- 6.5.5 Работы по устройству защитного покрытия на монтажной площадке следует выполнять в несколько этапов:
 - подготовка оцинкованной поверхности;

- нанесение грунтовочного покрытия;
- нанесение покрывных слоев с просушкой каждого слоя.
- 6.5.6 Перед нанесением мастики на незащищенную поверхность ее необходимо очистить от грязи, пыли, наледи, масляных и нефтяных пятен. Твердые наслоения следует снимать металлическими щетками, лед удалять газовоздушными горелками, нефтяные и масляные пятна снимать ветошью, смоченной бензином.
- 6.5.7 Нанесение мастики в зимних условиях допускается при температуре не ниже минус 20 °C. При этом поверхности следует подогревать до температуры на величину от 40 °C до 50 °C газовоздушными горелками.

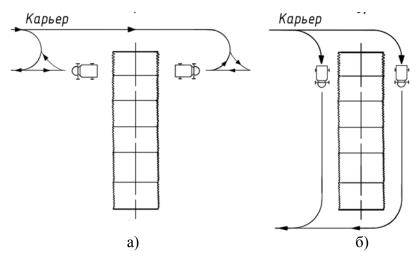
Очистку и нанесение мастики в зимних условиях следует производить под прикрытием переносных утепленных навесов.

6.5.8 Очистку зон болтовых соединений рекомендуется производить пескоструйным способом. При малых зонах очистки и в труднодоступных местах допускается применение металлических щеток (ручных или механических). Для пескоструйной очистки следует применять просушенный кварцевый песок фракций от 0,5 до 2,0 мм.

После механической очистки поверхность должна обдуваться сжатым воздухом или очищаться волосяными щетками.

- 6.5.9 Нанесение грунтовочного покрытия следует производить методом распыления сжатым воздухом или методом безвоздушного распыления. Для нанесения грунтовочного покрытия толщиной от 0,2 до 0,3 мм рекомендуется применять битумный лак по ГОСТ 5631.
- 6.5.10 Основное защитное битумное покрытие должно состоять из двух или трех слоев. Нанесение мастики должно производиться после высыхания грунтовки, но не позднее, чем через сутки после ее нанесения. Нанесение мастики следует производить методом безвоздушного распыления. В труднодоступных местах допускается нанесение мастики с помощью кисти

или валика. Температура наносимой мастики не должна превышать 150 °C. Толщина наносимых слоев должна составлять от 1,5 до 2,0 мм.


Состав, свойства, способы приготовления и методы испытания битумных мастик приведены в ВСН 176-78 (приложение 9) [3].

- 6.5.11 Оборудование, применяемое при производстве работ по подготовке поверхности трубы и нанесению защитного покрытия, приведено в Б.3 (приложение Б).
- 6.5.12 После окончания работ по устройству защитного покрытия должно быть проведено освидетельствование работ и составлен акт согласно форме, приведенной в СТО НОСТРОЙ 2.25.99 (приложение М).

6.6 Устройство грунтовой обоймы и засыпка металлических водопропускных труб

- 6.6.1 Устройство грунтовой обоймы должно выполняться в едином технологическом процессе с засыпкой трубы до проектной отметки.
- 6.6.2 Устройство грунтовых обойм и засыпку металлических водопропускных труб следует вести с опережением возведения земляного полотна. Необходимость оставления в насыпях прогалов для устройства металлических водопропускных труб должна быть обоснована проектом, при этом ширина прогала понизу должна назначаться из расчета обеспечения расстояния между основанием откоса насыпи и осью трубы в соответствии с 6.3.4.
- 6.6.3 Устройство грунтовой обоймы должно производиться грунтами, перечисленными в 4.2.3 4.2.4. В обоснованных проектом случаях должно выполняться усиление грунтовой обоймы армированием геотекстилем, объемными георешетками или другими мероприятиями.
- 6.6.4 Процесс устройства неармированной грунтовой обоймы у труб диаметром до 3 м должен включать следующие виды работ:
- транспортировку грунта из карьера или резерва автосамосвалами или скреперами;
 - разравнивание грунта бульдозером слоями заданной толщины;

- послойное уплотнение грунта виброкатками или пневмокатками, а в непосредственной близости от трубы (менее 1 метра) механизированными трамбовками с подштыковкой грунта в гофрах трубы;
 - контроль плотности засыпки.
- 6.6.5 Первоначально должны быть засыпаны зазоры между нижней частью трубы и основанием с уплотнением грунта ручными штыковками. Необходимо производить подсыпку грунта в нижней трети трубы (до охвата грунтом не менее 120°) с уплотнением виброплитами или трамбовками, которые следует располагать на расстоянии 5 см от гребней гофров, и подштыковкой.
- 6.6.6 Отсыпку грунта следует производить с разворотом самосвала перед трубой и подачей его для разгрузки задним ходом вдоль оси насыпи (см. изображение *а*) рисунка 4) или кольцевым движением самосвалов и скреперов с въездом и съездом со стороны откосов насыпи (см. изображение *б*) рисунка 4). Вторую схему целесообразно применять в случае засыпки труб в прогалах.

а) – подача задним ходом, б) – кольцевое движение

Рисунок 4 – Схемы движения автосамосвалов в процессе отсыпки грунта

6.6.7 Засыпка труб больших диаметров должна производиться наклонными от трубы слоями с уклоном не более 1:5 (см. рисунок 5). Толщина слоев отсыпки и засыпки над верхом конструкции в зависимости

СТО НОСТРОЙ 2.25.101-2013

от грунтоуплотняющих средств приведена в таблице 7 согласно ВСН 176-78 [3].

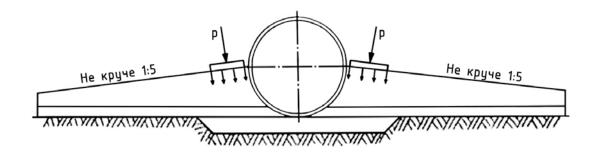


Рисунок 5 – Схема засыпки и уплотнения грунта наклонными слоями

Таблица 7

	Минимальное	Максимальная	Минимальный
Механизмы для уплотнения	количество	толщина слоя	слой грунта над
грунта и их масса	проходов по	грунта после	верхом
	одному следу	уплотнения, м	конструкции, м
Ручная трамбовка, 15 кг	4	0,20	0,20
Вибрационная трамбовка, 70 кг	4	0,30	0,30
Вибрационная плита, 50 кг	4	0,20	0,15
Вибрационная плита, 100 кг	4	0,20	0,20
Вибрационная плита, 200 кг	4	0,30	0,30
Вибрационная плита, 400 кг	4	0,30	0,25
Вибрационная плита, 600 кг	4	0,40	0,40
Вибрационный каток со	6	0,35	0,50
статической нагрузкой, 15 кН/м2			
Вибрационный каток со	6	0,60	1,00
статической нагрузкой, 15 кH/м ²			

Примечание — Максимальная плотность и оптимальная влажность грунта должны быть указаны в проекте и дополнительно уточнены до начала работ. Число проходов катка по одному следу следует устанавливать по результатам пробного уплотнения. Фактическая плотность грунта должна постоянно контролироваться в процессе выполнения земляных работ. В случае, когда не достигается требуемый коэффициент уплотнения, следует уменьшить толщину слоя или увеличить число проходов уплотняющей техники.

- 6.6.8 Засыпку труб в прогалах рекомендуется производить бульдозерами, перемещающими грунт, доставленный для этой цели и уложенный с обеих сторон трубы на насыпи.
- 6.6.9 Засыпка труб должна производиться одновременно с обеих сторон послойно, разница в уровнях засыпки не должна превышать 20 см. Уложенный грунт должен разравниваться бульдозером и уплотняться.

После уплотнения слоя грунта с одной стороны трубы должна производиться отсыпка следующего слоя, а с другой стороны – уплотнение грунта. В таком порядке должна осуществляться отсыпка и уплотнение всех слоев до верха трубы.

- 6.6.10 Уплотнение каждого слоя грунта, если оно производится при движении машин вдоль трубы, следует начинать с удаленных от нее участков и с каждым последующим проходом приближаться к стенкам трубы. Уплотнение грунта непосредственно у трубы допускается в том случае, когда с противоположной ее стороны уже отсыпан слой грунта этого же горизонта по всей длине трубы.
- 6.6.11 Уплотнять грунт вокруг трубы следует машиной виброударного действия для стесненных условий (см. рисунок Г.1 приложения Г). При уплотнении слоев, расположенных ниже горизонтального диаметра трубы, машина должна передвигаться вдоль трубы; слои, находящиеся выше этого уровня, целесообразно уплотнять челночным способом (см. рисунок 6), если труба засыпается до возведения насыпи или в широком прогале (ОДМ 218.2.001-2009 [1]). Последовательность отсыпки слоев, их толщина и допустимое приближение к трубе рабочих органов уплотняющих машин указываются в ППР.
- 6.6.12 При уплотнении грунта катком он должен перемещаться вдоль трубы по кольцевой или по челночной схеме. Приближение катка к трубе допускается на расстояние не менее 1,0 м (см. рисунок Г.2 приложения Г).

СТО НОСТРОЙ 2.25.101-2013

Допускается выполнять гидроуплотнение грунта при наличии обоснования в проекте. При этом необходимо следить, чтобы не произошел размыв грунта.

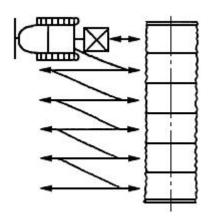


Рисунок 6 – Схема уплотнения грунта виброударной машиной челночным способом (направление движения – вверх)

- 6.6.13 Грунтовая обойма вокруг труб должна быть отсыпана на ширину не менее 4 м с каждой стороны трубы и высотой не менее 0,5 м над верхом конструкции.
- 6.6.14 Проезд строительных машин над трубами диаметром до трех метров допускается:
- с нагрузкой на ось 10 тс при толщине слоя засыпки в плотном теле над верхом конструкции не менее 0,5 м;
 - с нагрузкой на ось от 11 до 20 тс не менее 0.8 м;
 - с нагрузкой на ось от 21 то 50 тс не менее 1 м.

Если проектом предусмотрена меньшая толщина засыпки, то для пропуска машин через трубу требуется досыпать грунт до указанной толщины.

Примечание — Минимальная толщина над сводом водопропускных сооружений больших отверстий из гофрированного металла должна быть подтверждена расчетом.

6.6.15 Труба должна быть засыпана не позднее, чем через трое суток после нанесения дополнительного защитного слоя.

- 6.6.16 В зимнее время засыпка должна выполняться без длительных перерывов сухим, несмерзшимся грунтом с соблюдением требований СТО НОСТРОЙ 2.25.99 (пункт 7.7.6). Следует предохранять грунт от промерзания. Уплотнение следует производить машинами ударного и виброударного действия.
- 6.6.17 После окончания работ засыпка трубы должна быть освидетельствована с составлением акта на скрытые работы по форме, приведенной в СТО НОСТРОЙ 2.25.99 (приложение Ж).

6.7 Устройство лотков

6.7.1 На нижней поверхности трубы должны быть устроены сборные или монолитные лотки из материалов, указанных в 4.4.2. Толщина лотка над гребнем гофра должна быть не меньше 2 см, угол охвата внутренней поверхности трубы лотком должен составлять от 90° до 120°. Края лотка должны не менее чем на 10 см возвышаться над меженным уровнем воды в трубе.

Для заполнения участков с выступающими монтажными болтами должны использоваться блоки уменьшенной толщины. Количество таких блоков и их толщина должны быть указаны в проекте.

6.7.2 Лотки следует устраивать после возведения насыпи до проектной отметки и при положительной температуре воздуха.

Укладку лотка при отрицательной температуре воздуха допускается осуществлять при условии разработки специального раздела ППР, предусматривающего мероприятия по обеспечению необходимых условий производства работ в зимнее время.

- 6.7.3 Укладка блоков лотков должна производиться на очищенную внутреннюю поверхность трубы, предварительно покрытую защитным слоем (см. 6.5).
- 6.7.4 При устройстве лотков в секциях труб до их монтажа, длина лотка должна быть меньше длины секции настолько, чтобы обеспечить возможность стыкования секций стандартными соединительными

элементами при монтаже труб. Устройство лотка на стыковых участках осуществляется после установки очередной секции. Стыковые участки секций труб заполняются бетоном, полимербетоном, горячей асфальтобетонной смесью или блоками из этих материалов.

Лотки в сборных трубах диаметром 1,00 м и 1,25 м следует устраивать по мере установки очередного нижнего полукольца.

- 6.7.5 Устройство сборных бетонных лотков должно включать следующие операции:
- очистка внутренней поверхности трубы от грязи и мусора с помощью щеток, чтобы не повредить защитное битумное покрытие;
 - транспортирование блоков к месту укладки в соответствии с 5.5;
- укладка блоков вручную на битумную эмульсию или другой материал на битумной основе в холодном состоянии.

Примечание — Битумный материал должен наноситься на поверхность блока и разравниваться шпателем толщиной не более 5 мм.

- 6.7.6 Устройство монолитных бетонных лотков должно включать следующие операции:
 - очистка внутренней поверхности трубы по 6.7.5;
- укладка и уплотнение бетона по всей ширине лотка виброрейкой с последующим уплотнением виброплощадкой в соответствии с требованиями СТО НОСТРОЙ 2.6.54 (разделы 5, 8, 11 18) и СП 35.13330 (глава 6).
- 6.7.7 Устройство лотков из битумно-минеральных материалов и лотков из полимерных и битумно-полимерных материалов должно включать следующие операции:
 - очистка внутренней поверхности трубы по 6.7.5;
- устройство лотка в соответствии с техническими условиями [9] (пункт 5.7).
- 6.7.8 Сборные блоки следует укладывать вручную по обработанному битумной эмульсией или битумом основанию в направлении «на себя». При устройстве лотков на полигонах или непосредственно на строительной

площадке блоки следует укладывать одновременно в двух направлениях от середины к торцам трубы или секции.

- 6.7.9 После окончания работ по устройству лотка поверхность его следует обработать битумной эмульсией по ГОСТ Р 52128 с соблюдением требований нанесения по 6.5. Работы по устройству сборного лотка считаются законченными после полного высыхания битумной эмульсии на его поверхности.
- 6.7.10 Работы по устройству лотков подлежат освидетельствованию с составлением акта на скрытые работы по форме, приведенной в СТО НОСТРОЙ 2.25.99 (приложение Ж).

6.8 Устройство оголовков, укрепление русла

6.8.1 Оголовки металлических водопропускных труб, как правило, должны устраиваться из сборных железобетонных элементов, отвечающих требованиям 4.4.1, в соответствии с СТО НОСТРОЙ 2.25.99 (подраздел 7.5).

Металлические водопропускные трубы могут устраиваться без оголовков, при этом торцы труб должны быть обрезаны вертикально или наклонно, параллельно откосу насыпи. На вертикальные торцы должны устанавливаться окаймляющие уголки.

Наличие и тип оголовков должен быть определен в проекте.

- 6.8.2 Укрепление входных и выходных русел при устройстве водопропускных труб следует производить в соответствии с СТО НОСТРОЙ 2.25.99 (подраздел 7.8).
- 6.8.3 После завершения всех работ следует производить приемку трубы в целом с оформлением акта промежуточной приемки ответственных конструкций в соответствии с СТО НОСТРОЙ 2.25.99 (приложение Л).

6.9 Особенности устройства многоочковых труб и труб с сечением, отличным от круглого

- 6.9.1 Особенности устройства многоочковых труб.
- 6.9.1.1 В проектах на устройство многоочковых металлических труб расстояние в свету между звеньями должно соответствовать

требованию 6.3.4 и быть не менее 1 м для обеспечения удобства отсыпки и уплотнения грунта.

- 6.9.1.2 Для засыпки пазух многоочковых металлических труб следует использовать универсальные экскаваторы-планировщики либо экскаваторы с удлиненной стрелой.
- 6.9.1.3 Засыпка и уплотнение грунта в пазухах между трубами должны выполняться с соблюдением требований, изложенных в 6.6, таким образом, чтобы исключить какие-либо повреждения конструкции труб и их защитного покрытия.
- 6.9.1.4 Уплотнение следует производить механизированными трамбовками при последовательной отсыпке слоев.
- 6.9.1.5 Последовательность отсыпки слоев и схема послойного уплотнения грунта засыпки многоочковых труб приведена на рисунке $\Gamma.3$ (приложение Γ).
- 6.9.1.6 Работы по устройству котлованов, оснований, противофильтрационных экранов, монтаж конструкций трубы, устройство дополнительного защитного покрытия, устройство лотков и оголовков должны выполняться с соблюдением требований 6.1 6.8.
 - 6.9.2 Особенности устройства труб с сечением, отличным от круглого.
- 6.9.2.1 Способ монтажа труб с сечением, отличным от круглого, должен быть указан в ППР и соответствовать одному из способов по 6.4.

Монтаж арочно-лотковых МГТ на грунтовое основание должен выполняться при последовательном соединении арочных и лотковых элементов, как по поперечному сечению, так и в продольном направлении. Порядок монтажа должен быть изложен в ППР. Требования к монтажу соединений и стыков приведены в 6.4.

Схемы арочно-лотковых МГТ приведены в приложении Д.

6.9.2.2 Требования к выполнению работ по обратной засыпке труб с сечением, отличным от круглого, аналогичны требованиям при устройстве круглых труб, изложенным в 6.6.

6.9.2.3 Устройство монолитных лотков арочных труб следует выполнять по проекту с соблюдением требований СТО НОСТРОЙ 2.25.99 (подраздел 7.8).

6.10 Завершающие работы

После выполнения основных работ и до сдачи водопропускной трубы в эксплуатацию должны быть выполнены следующие работы:

- удален из русла и вывезен грунт, отсыпанный на время производства работ;
 - очищены русло и пойма от посторонних предметов;
- разобраны и вывезены временные сооружения на строительной площадке;
 - выполнена планировка и рекультивация земель;
- в случае указания в проекте или по предписанию контролирующих органов выполнена посадка кустарников и деревьев на всей территории строительства, включая подъездные дороги;
 - выполнено благоустройство территорий в местах грунтовых карьеров.

Выполнение перечисленных работ должно быть указано в акте сдачи водопропускной трубы в эксплуатацию.

7 Реконструкция металлических водопропускных труб

7.1 Общие требования

- 7.1.1 Конструктивные решения и способы выполнения работ при реконструкции эксплуатируемых металлических водопропускных труб должны быть определены в проекте. Проектом может быть предусмотрено:
 - полное переустройство водопропускной трубы;
 - удлинение трубы без переустройства существующей части.

7.1.2 Работы по реконструкции металлических водопропускных труб следует производить в сухое время года, чтобы исключить влияние потока воды через трубу.

При необходимости пропуска воды должно быть устроено временное русло или временная водопропускная труба.

- 7.1.3 До начала работ по реконструкции металлических водопропускных труб должно быть произведено устройство временного объезда в соответствии с проектом. При невозможности его сооружения необходимо организовать поэтапное выполнение работ на одной половине дороги с одновременным регулированием движения по другой половине.
- 7.1.4 Требования к применяемым материалам и изделиям, порядок транспортирования и складирования элементов новой водопропускной трубы приведены в разделах 4 и 5.

7.2 Технологические и конструктивные особенности выполнения работ по полной перестройке металлических водопропускных труб

- 7.2.1 Проектом полной перестройки водопропускной трубы могут быть предусмотрены следующие варианты:
- замена существующих бетонных или железобетонных водопропускных труб на металлические;
- замена существующих металлических водопропускных труб на однотипные трубы или на трубы, имеющие другие параметры (величина рабочего отверстия, количество отверстий);
 - увеличение количества рабочих отверстий труб.
- 7.2.2 До начала работ необходимо произвести установку дорожных знаков, указателей объезда и ограждений. Порядок ограждения места производства работ должен быть указан в ППР.
- 7.2.3 Производство работ начинается с удаления (разборки) существующей дорожной одежды в пределах будущего котлована и вывоза материала.

- 7.2.4 Разработка котлована с целью освобождения старой трубы от грунта должна быть выполнена до уровня подошвы фундамента или основания старой трубы (для бесфундаментных труб) в соответствии с требованиями 6.3.
- 7.2.5 Ширина котлована по подошве должна обеспечивать выполнение требований 6.3.4 и быть шире основания старой трубы с одной стороны не менее чем на 3 м, а с другой стороны не менее чем на 1 м. Размеры котлована должны быть указаны в ППР.

При необходимости устройства временного обводного русла для пропуска воды котлован должен быть уширен.

Примечание — Ширина и глубина временного обводного русла определяются расчетом в ППР.

- 7.2.6 В слабых и переувлажненных грунтах котлован должен ограждаться деревянным или металлическим шпунтом в соответствии с ППР.
- 7.2.7 Демонтаж конструкций старой водопропускной трубы должен производиться в соответствии с проектом демонтажа. Демонтированные элементы конструкций старой трубы должны сразу же вывозиться для утилизации за пределы строительной площадки.
- 7.2.8 Материал основания старой трубы должен сдвигаться за пределы котлована бульдозером. Допускается использование старого материала основания для укрепления временного отводного русла.
- 7.2.9 Планировка и уплотнение дна котлована и устройство основания под новую трубу должно быть выполнено в соответствии с требованиями 6.3.
- 7.2.10 Монтаж металлических конструкций новой водопропускной трубы должен быть выполнен в соответствии с требованиями 6.4.
- 7.2.11 Нанесение дополнительного защитного покрытия производится в соответствии с требованиями 6.5.
- 7.2.12 Устройство грунтовой обоймы и засыпка металлических водопропускных труб производится в соответствии с требованиями 6.6. Грунт засыпки должен иметь оптимальную влажность. Коэффициент

уплотнения грунта должен быть равен 1,0 во избежание просадок грунта и дорожной одежды над трубой.

- 7.2.13 Устройство лотков, устройство оголовков, укрепление русла должны выполняться в соответствии с требованиями 6.7 и 6.8.
- 7.2.14 Реконструкция многоочковых металлических водопропускных труб, в том числе путем добавления новых труб к уже существующим, и труб с сечением, отличным от круглого, должна производиться в соответствии с требованиями 6.9.
- 7.2.15 В завершение работ должна быть выполнена расчистка подводящего и отводящего русел, их укрепление и укрепление откосов у оголовков в соответствии с проектом.

7.3 Технологические и конструктивные особенности выполнения работ по удлинению металлических водопропускных труб

- 7.3.1 При одностороннем удлинении металлических водопропускных труб работы рекомендуется выполнять со стороны выходного оголовка.
- 7.3.2 При двухстороннем удлинении труб работы рекомендуется выполнять в первую очередь со стороны выходного оголовка. Работы со стороны входного оголовка должны выполняться после завершения основных работ на выходном оголовке.
- 7.3.3 При наличии в трубе постоянного водотока до начала основных работ должно быть устроено временное отводящее русло в соответствии с проектом.
- 7.3.4 Первоначально должно быть демонтировано и удалено за пределы зоны работ существующее укрепление русла и откосов в зоне работ.
- 7.3.5 После этого должно быть произведено удаление части грунта откоса, примыкающего к оголовку или выпуску трубы, не менее чем на 0,5 м ее длины.

Примечания

1 В случае опасности обрушения откоса должно быть выполнено шпунтовое ограждение.

- 2 В случае безоголовочной конструкции существующей МГТ с косым срезом концевой секции грунт должен быть удален с таким расчетом, чтобы освободить трубу на 0,5 м от верхнего края среза.
- 7.3.6 Должен быть произведен демонтаж оголовка трубы или окаймляющих уголков.
- 7.3.7 Разработка котлована и устройство основания удлиняемой части трубы должны быть произведены в соответствии с требованиями 6.3.

Примечание — При поступлении в котлован воды необходимо обеспечить ее откачку и выпуск ниже в русло по уклону. При необходимости возможно устройство временного сливного лотка, конструкция и размеры которого должны быть приведены в ППР.

7.3.8 Монтаж металлических конструкций удлиняемой части трубы должен быть произведен в соответствии с требованиями 6.4 с нанесением дополнительного защитного покрытия в соответствии с 6.5.

Перед удлинением трубы должны быть устранены все дефекты трубы или ее элементов (применительно для сборных МГТ). Стыковка старых секций труб с новыми должна выполняться после тщательной очистки и нанесения дополнительного защитного покрытия на эксплуатируемые части старой трубы в соответствии с 6.5.

- 7.3.9 Устройство грунтовой обоймы и засыпка удлиняемой части металлических водопропускных труб должны производиться с соблюдением требований 6.6. Засыпка грунтом должна производиться одновременно с уширением земляного полотна. Для обеспечения совместной работы грунта существующей насыпи с грунтом уширенной части на откосе насыпи должны быть нарезаны уступы, форма и размеры которых указываются в проекте.
- 7.3.10 Устройство лотков в удлиняемой части, устройство оголовков, укрепление русла должны выполняться в соответствии с требованиями проекта, а также согласно 6.7 и 6.8.

8 Контроль выполнения работ при устройстве и реконструкции металлических водопропускных труб

- 8.1 При выполнении работ по устройству и реконструкции металлических водопропускных труб должен осуществляться:
 - входной контроль;
 - операционный контроль;
- оценка соответствия выполненных работ и конструкций совместно с заказчиком.

Структура системы строительного контроля подрядчика приведена в E.1 (приложении E).

- 8.2 При входном контроле осуществляется:
- проверка полноты и качества проектной документации;
- контроль качества применяемых строительных материалов, конструкций и изделий;
 - освидетельствование геодезической разбивочной основы.
- 8.2.1 При осуществлении контроля качества строительных материалов и изделий проверяется наличие маркировки, паспортов и сертификатов качества. Все поступающие на строительную площадку материалы и изделия должны соответствовать требованиям раздела 4.

Соответствие применяемых материалов требованиям ГОСТ и ТУ, указанным в разделе 4, подтверждается наличием на них паспортов, а качество – результатами лабораторных испытаний.

- 8.2.2 Геодезическая основа должна соответствовать требованиям 6.2. Форма акта приемки геодезической разбивочной основы строительства приведена в СТО НОСТРОЙ 2.25.99 (приложение Д).
- 8.3 При операционном контроле осуществляется освидетельствование скрытых работ, освидетельствование ответственных конструкций, контроль выполнения и завершения следующих работ:

- устройство котлованов, оснований, подушек и противофильтрационных экранов по 6.3;
- монтаж металлических конструкций трубы по 6.4. Контролируемые параметры и допуски при монтаже конструкций трубы приведены в Е.2 (приложение E);
- устройство дополнительного защитного покрытия по 6.5. Контролируемые параметры и допуски при устройство дополнительного защитного покрытия приведены в Е.3 (приложение Е);
- устройство грунтовой обоймы и засыпка металлических водопропускных труб по 6.6. Контролируемые параметры и допуски при устройстве грунтовой обоймы и засыпке труб приведены в Е.4 (приложение E);
- устройство лотков по 6.7. Контролируемые параметры и допуски при устройстве лотков приведены в Е.5 (приложение Е);
 - устройство оголовков, укрепление русла по 6.8;
 - выполнение завершающих работ по 6.10.

Перечень скрытых работ при устройстве водопропускной трубы, подлежащих освидетельствованию после их завершения, форма акта освидетельствования скрытых работ, форма общего журнала работ приведены в СТО НОСТРОЙ 2.25.99 (приложение В, приложение Ж, приложение Н).

- 8.4 Оценка соответствия выполненных работ и конструкций совместно с заказчиком выполняется:
 - при промежуточной приемке этапов выполненных работ;
- на заключительном этапе при приемке законченных строительством объектов.
- 8.4.1 Оценка соответствия этапов выполненных работ должна осуществляться сразу после завершения очередного этапа с составлением соответствующих актов. Форма акта промежуточной приемки ответственных конструкций приведена в СТО НОСТРОЙ 2.25.99 (приложение Л).

Оценка соответствия этапов выполненных работ производится комиссией в составе представителей:

- заказчика или технического надзора,
- подрядной строительной организации,
- проектной организации.
- 8.4.2 Заключительная оценка соответствия законченной строительством водопропускной трубы должна осуществляться приемочной комиссией, назначаемой заказчиком. Приемочная комиссия проверяет соответствие законченной строительством водопропускной трубы проектной документации, а также оценивает объем и качество выполненных работ с составлением актов приемки работ.

При заключительной оценке соответствия законченной строительством водопропускной трубы контролю подлежат:

- соответствие сооружения проектной документации;
- соответствие применяемых материалов, конструкций и изделий требованиям проекта, стандартов и других нормативных документов;
- соответствие объемов работ по отдельным видам требованиям проектной и исполнительной документации;
- полнота и качество промежуточной приемки ответственных конструкций, освидетельствование скрытых работ и ведение исполнительной производственно-технической документации.

Примечание – Исполнительная производственно-техническая документация включает:

- исполнительные чертежи, общие журналы работ и журналы авторского надзора;
- акты освидетельствования скрытых работ и промежуточной приемки ответственных конструкций;
- журналы лабораторного контроля, акты испытаний строительных материалов и контрольных образцов, паспорта, сертификаты на материалы и изделия.
- 8.4.3 По требованию заказчика может быть произведено вскрытие конструкций. В случае выявления несоответствия выполненных работ

проектным решениям и требованиям нормативных документов, работы подлежат переделке.

Примечание — Выполнение данных работ во всех случаях производится за счет заказчика, а выявленные дефекты и брак устраняются подрядной строительной организацией.

8.5 Входной контроль, операционный контроль и оценка соответствия выполненных работ при реконструкции металлических водопропускных труб должны производиться в соответствии с 8.1-8.4.

9 Требования к безопасному выполнению работ

- 9.1 Общие положения по безопасности труда при устройстве водопропускных труб приведены в СТО НОСТРОЙ 2.25.99 (приложение Р).
- 9.2 Особенности безопасного выполнения работ при устройстве металлических водопропускных труб приведены в приложении Ж.

Приложение А

(справочное)

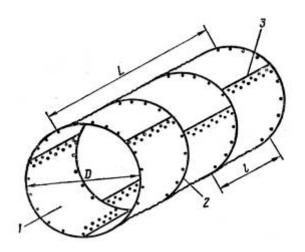
Основные параметры и размеры металлических труб

А.1 Типы секций спиральновитых МГТ и их основные геометрические параметры приведены в таблице А.1.

Таблица А.1 – Параметры и вес МГТ (кг) в зависимости от диаметра трубы и толщины металла на 1 погонный метр

		- 1	Без покр	ытия ST	()		Защита HDPE с одной стороны 1xTC					Защита HDPE с двух сторон 2xTC						
Диаметр, мм			Толщи	на, мм			Толщина, мм				Толщина, мм							
	1,25	1,5	2,0	2,5	3,0	3,5	1,64	2,0	2,5	2,7	3,0	3,5	1,64	2,0	2,5	2,7	3,0	3,5
300	11,05	13,26	17,93				14,78	17,96					15,06	18,24				
350	12,89	15,47	20,92				17,24	20,95					17,57	21,28				
400	14,73	17,68	23,91				19,71	23,95					20,08	24,32				
450	16,58	19,89	26,90				22,17	26,94					22,59	27,36				
500	18,42	22,10	29,88	36,85			24,63	29,93	37,31				25,10	30,40	37,77			
550	20,26	24,31	32,87	40,54			27,10	32,93	41,04				27,61	33,44	41,55			
600	22,10	26,52	35,86	44,22	53,06	61,90	29,56	35,92	44,77	48,31	53,61	62,46	30,12	36,48	45,32	48,86	54,17	63,01
650	23,94	28,73	38,85	47,91	57,48	67,06	32,02	38,91	48,50	52,34	58,08	67,67	32,63	39,52	49,10	52,93	58,68	68,26
700	25,78	30,94	41,84	51,59	61,90	72,22	34,49	41,91	52,23	56,36	62,55	72,87	35,14	42,56	52,88	57,00	63,20	73,51
750	27,63	33,15	44,83	55,28	66,33	77,38	36,95	44,90	55,97	60,39	67,01	78,08	37,65	45,60	56,66	61,08	67,71	78,76
800	29,47	35,36	47,81	58,96	70,75	82,53	39,41	47,89	59,70	64,41	71,48	83,28	40,16	48,64	60,43	65,15	72,23	84,01
850	31,31	37,57	50,80	62,65	75,17	87,69	41,88	50,89	63,43	68,44	75,95	88,49	42,67	51,68	64,21	69,22	76,74	89,26
900	33,15	39,78	53,79	66,33	79,59	92,85	44,34	53,88	67,16	72,47	80,42	93,69	45,18	54,72	67,99	73,29	81,26	94,52
950	34,99	41,99	56,78	70,02	84,01	98,01	46,80	56,87	70,89	76,49	84,88	98,90	47,69	57,76	71,76	77,36	85,77	99,77
1000	36,83	44,20	59,77	73,70	88,43	103,17	49,27	59,87	74,62	80,52	89,35	104,10	50,20	60,80	75,54	81,43	90,28	105,02
1050	38,68	46,41	62,76	77,39	92,86	108,33	51,73	62,86	78,35	84,54	93,82	109,31	52,71	63,84	79,32	85,51	94,80	110,27
1100	40,52	48,62	65,74	81,07	97,28	113,48	54,19	65,85	82,08	88,57	98,29	114,51	55,22	66,88	83,09	89,58	99,31	115,52
1150	42,36	50,83	68,73	84,76	101,70	118,64	56,66	68,85	85,81	92,59	102,75	119,72	57,73	69,92	86,87	93,65	103,83	120,77
1200	44,20	53,04	71,72	88,44	106,12	123,80	59,12	71,84	89,54	96,62	107,22	124,92	60,24	72,96	90,65	97,72	108,34	126,02
1250	46,04	55,25	74,71	92,13	110,54	128,96	61,58	74,83	93,28	100,65	111,69	130,13	62,75	76,00	94,43	101,79	112,85	131,27
1300	47,88	57,46	77,70	95,81	114,96	134,12	64,05	77,83	97,01	104,67	116,16	135,33	65,26	79,04	98,20	105,86	117,37	136,52
1350	49,73	59,67	80,69	99,50	119,39	139,28	66,51	80,82	100,74	108,70	120,62	140,54	67,77	82,08	101,98	109,94	121,88	141,77
1400	51,57	61,88	83,67	103,18	123,81	144,43	68,97	83,81	104,47	112,72	125,09	145,74	70,28	85,12	105,76	114,01	126,40	147,02
1450	53,41	64,09	86,66	106,87	128,23	1 49,59	71,44	86,81	108,20	116,75	129,56	150,95	72,79	88,16	109,53	118,08	130,91	152,27
1500	55,25	66,30	89,65	110,55	132,65	154,75	73,90	89,80	111,93	120,78	134,03	156,15	75,30	91,20	113,31	122,15	135,43	157,53
			Без покр	ытия ST				Защита	HDPE с од	ной сторо	ны 1хТС			Защита	а HDPE с д	цвух сторо	н 2хТС	

			Толщи	іна, мм					Толщи	іна, мм					Толщи	іна, мм		
1550	57,09	68,51	92,64	114,24	137,07	159,91	76,36	92,79	115,66	124,80	138,49	161,36	77,81	94,24	117,09	126,22	139,94	162,78
1600	58,93	70,72	95,63	117,92	141,49	165,07	78,83	95,79	119,39	128,83	142,96	166,56	80,32	97,28	120,86	130,29	144,45	168,03
1650	60,78	72,93	98,62	121,61	145,92	170,23	81,29	98,78	123,12	132,85	147,43	171,77	82,83	100,32	124,64	134,37	148,97	173,28
1700 1750	62,62	75,14 77,35	101,60 104,59	125,29 128,98	150,34 154,76	175,38 180,54	83,75 86,22	101,77 104,77	126,85 130,59	136,88 140,90	151,90 156,36	176,97 182,18	85,34 87,85	103,36	128,42 132,20	138,44 142,51	153,48 158,00	178,53 183,78
1800	64,46 66,30	79,56	104,59	132,66	154,76	185,70	88,68	104,77	130,39	144,93	160,83	187,38	90,36	106,40 109,44	132,20	142,51	162,51	189,03
1850	68,14	81,77	110,57	136,35	163,60	190,86	91,14	110,75	138,05	148,96	165,30	192,59	92,87	112,48	139,75	150,65	167,02	194,28
1900	69,98	83,98	113,56	140,03	168,02	196,02	93,61	113,75	141,78	152,98	169,77	197,79	95,38	115,52	143,53	154,72	171,54	199,53
1950	71,83	86,19	116,55	143,72	172,45	201,18	96,07	116,74	145,51	157,01	174,23	203,00	97,89	118,56	147,30	158,80	176,05	204,78
2000	73,67	88,40	119,53	147,40	176,87	206,33	98,53	119,73	149,24	161,03	178,70	208,20	100,40	121,60	151,08	162,87	180,57	210,03
		ı	1	ı	ST	1		ı	1	ı	lxTC	1			ı	ı	2xTC	
2050	1,25	1,5	2,0	2,5	3,0	3,5	1,64	2,0	2,5	2,7	3,0	3,5	1,64	2,0	2,5	2,7	3,0	3,5
2050	75,51	90,61	122,52	151,09	181,29	211,49	101,00	122,73	152,97	165,06	183,17	213,41	102,91	124,64	154,86	166,94	185,08	215,28
2100	77,35	92,82	125,51	154,77	185,71	216,65		125,72	156,70	169,09	187,64	218,61		127,68	158,63	171,01	189,60	220,54
2150	79,19	95,03	128,50	158,46	190,13	221,81		128,71	160,43	173,11	192,10	223,82		130,72	162,41	175,08	194,11	225,79
2200	81,03	97,24	131,49	162,14	194,55	226,97		131,71	164,16	177,14	196,57	229,02		133,76	166,19	179,15	198,62	231,04
2250	82,88	99,45	134,48	165,83	198,98	232,13		134,70	167,90	181,16	201,04	234,23		136,80	169,97	183,23	203,14	236,29
2300	84,72	101,66	137,46	169,51	203,40	237,28		137,69	171,63	185,19	205,51	239,43		139,84	173,74	187,30	207,65	241,54
2350	86,56	103,87	140,45	173,20	207,82	242,44		140,69	175,36	189,21	209,97	244,64		142,88	177,52	191,37	212,17	246,79
2400	88,40	106,08	143,44	176,88	212,24	247,60		143,68	179,09	193,24	214,44	249,84		145,92	181,30	195,44	216,68	252,04
2450	90,24	108,29	146,43	180,57	216,66	252,76		146,67	182,82	197,27	218,91	255,05		148,96	185,07	199,51	221,19	257,29
2500	92,08	110,50	149,42	184,25	221,08	257,92		149,67	186,55	201,29	223,38	260,25		152,00	188,85	203,58	225,71	262,54
2550		112,71	152,41	187,94	225,51	263,08		152,66	190,28	205,32	227,84	265,46		155,04	192,63	207,66	230,22	267,79
2600		114,92	155,39	191,62	229,93	268,23		155,65	194,01	209,34	232,31	270,66		158,08	196,40	211,73	234,74	273,04
2650		117,13	158,38	195,31	234,35	273,39		158,65	197,74	213,37	236,78	275,87		161,12	200,18	215,80	239,25	278,29
2700		119,34	161,37	198,99	238,77	278,55		161,64	201,47	217,40	241,25	281,07		164,16	203,96	219,87	243,77	283,55
2750		121,55	164,36	202,68	243,19	283,71		164,63	205,21	221,42	245,71	286,28		167,20	207,74	223,94	248,28	288,80
2800		123,76	167,35	206,36	247,61	288,87		167,63	208,94	225,45	250,18	291,48		170,24	211,51	228,01	252,79	294,05
2850		125,97	170,34	210,05	252,04	294,03		170,62	212,67	229,47	254,65	296,69		173,28	215,29	232,09	257,31	299,30
2900		128,18	173,32	213,73	256,46	299,18		173,61	216,40	233,50	259,12	301,89		176,32	219,07	236,16	261,82	304,55
2950		130,39	176,31	217,42	260,88	304,34		176,61	220,13	237,52	263,58	307,10		179,36	222,84	240.23	266,34	309,80
			Без покр	ытия ST			Защита HDPE с одной стороны 1xTC		Защита HDPE с двух сторон 2xTC									
			Толщи	іна, мм					Толщи	іна, мм			_		Толщи	іна, мм		


СТО НОСТРОЙ 2.25.101-2013

3000	132,60	179,30	221,10	265,30	309,50	179,60	223,86	241,55	268,05	312,30	182,40	226,62	244,30	270,85	315,05
3050	134,81	182,29	224,79	269,72	314,66	182,59	227,59	245,58	272,52	317,51	185,44	230,40	248,37	275,36	320,30
3100	137,02	185,28	228,47	274,14	319,82	185,59	231,32	249,60	276,99	322,71	188,48	234,17	252,44	279,88	325,55
3150	139,23	188,27	232,16	278,57	324,98	188,58	235,05	253,63	281,45	327,92	191,52	237,95	256,52	284,39	330,80
3200	141,44	191,25	235,84	282,99	330,13	191,57	238,78	257,65	285,92	333,12	194,56	241,73	260,59	288,91	336,05
3250	143,65	194,24	239,53	287,41	335,29	194,57	242,52	261,68	290,39	338,33	197,60	245,51	264,66	293,42	341,30
3300	145,86	197,23	243,21	291,83	340,45	197,56	246,25	265,71	294,86	343,53	200,64	249,28	268,73	297,94	346,56
3350	148,07	200,22	246,90	296,25	345,61	200,55	249,98	269,73	299,32	348,74	203,68	253,06	272,80	302,45	351,81
3400	150,28	203,21	250,58	300,67	350,77	203,55	253,71	273,76	303,79	353,94	206,72	256,84	276,87	306,96	357,06
3450	152,49	206,20	254,27	305,10	355,93	206,54	257,44	277,78	308,26	359,15	209,76	260,61	280,95	311,48	362,31
3500	154,70	209,18	257,95	309,52	361,08	209,53	261,17	281,81	312,73	364,35	212,80	264,39	285,02	315,99	367,56
3550	156,91	212,17	261,64	313,94	366,24	212,53	264,90	285,83	317,19	369,56	215,84	268,17	289,09	320,51	372,81
3600	159,12	215,16	265,32	318,36	371,40	215,52	268,63	289,86	321,66	374,76	218,88	271,94	293,16	325,02	378,06

А.2 Основные параметры и размеры элементов сборных МГТ

А.2.1 Конструкция трубы состоит из отдельных стандартных элементов – гофрированных листов, соединенных в секции продольными (вдоль оси трубы) и поперечными (поперек оси трубы) стыками внахлестку на болтах.

Схема секции трубы приведена на рисунке А.1.

1 – элемент; 2 – поперечный болтовой стык; 3 – продольный болтовой стык; D – диаметр трубы; L – длина секции; l – длина кольца Рисунок A.1 - Cxema секции трубы

А.2.2 Длина секций труб, кратная полезной ширине элемента, должна исходить из общей длины сооружения и удовлетворять требованиям монтажа и транспортировки.

А.2.3 Основные размеры стандартного элемента труб в мм:

толщина металла 1,5; 2,0 и 2,5 полезная ширина элемента 910 полезная длина элемента 1600

A.2.4 Конструкция и размеры элементов труб всех диаметров должны соответствовать указанным на рисунках A.2 - A.4 и в таблицах A.2 - A.4.

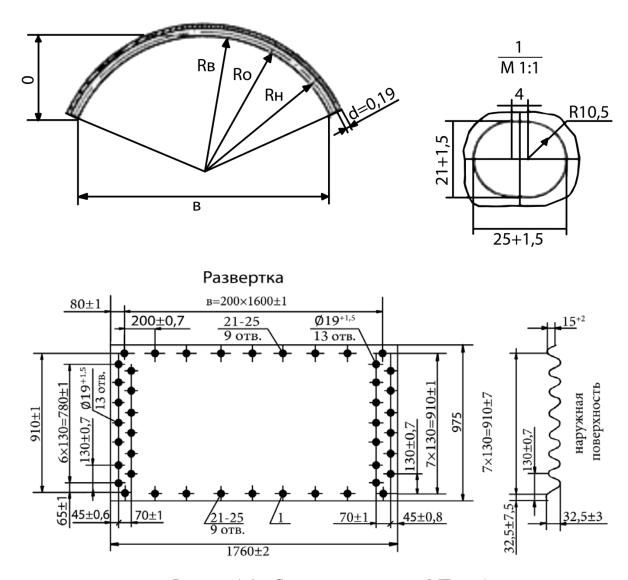


Рисунок А.2 – Стандартный элемент МГ труб

Таблица А.2

Марка элемента			Разм	иеры, мм			Macca,
тиарка элемента	d	а	b	Rb	<i>R0</i>	Rн	ΚΓ
ЛМГ 15.15	1,5	443,4	1365,4	747,3	764,3	781,3.	23,5
ЛМГ 15.20 ЛМГ 15.20М	2,0	443,3	1365,0	747,1	764,3	781,6	31,2
ЛМГ 15.25 ЛМГ 15.25М	2,5	443,1	1364,5	746,8	764,3	781,8	39,0
ЛМГ 20.20 ЛМГ 20.20М	2,0	351,2	1523,5	1001,8	1019,0	1036,3	31,2
ЛМГ 20.25 ЛМГ 20.25М	2,5	351,1	1523,1	1001,5	1019,0	1036,5	39,0
ЛМГ 30.25 ЛМГ 30.25М	2,5	243,7	1646,0	1511,1	1528,6	1546,1	39,0

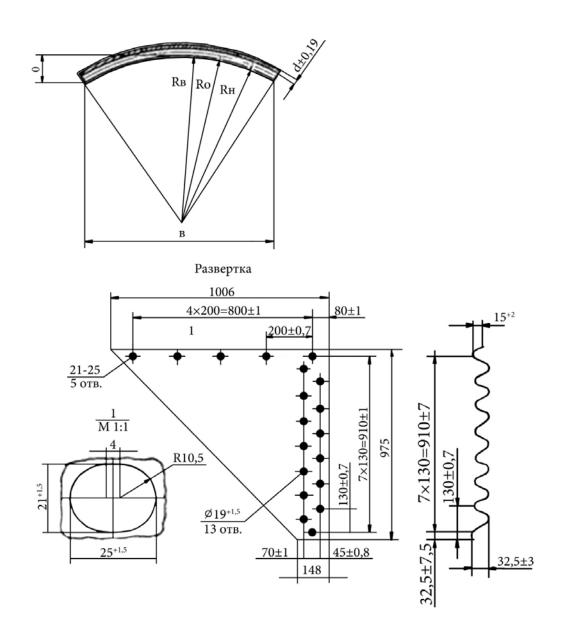


Рисунок А.3 – Элемент труб правый (элемент труб левый является зеркальным отображением)

Таблица А.3

Марка эномочто			Разм	еры, мм			Macca,
Марка элемента	d	а	b	Rb	<i>R0</i>	Rн	ΚΓ
ЛМГП 20.20 ЛМГП 20.20М	2,0	123,8	973,6	1001,8	1019,0	1036,3	10,4
ЛМГП 20.25 ЛМГП 20.25М	2,5	123,8	973,6	1001,5	1019,0	1036,5	13,0
ЛМГП 30.25 ЛМГП 30.25М	2,5	89,6	997,0	1511,1	1528,6	1546,1	13,0

Таблица А.4

Марка элемента			Pa	азмеры, м	M		Macca,
Марка элемента	d	а	b	Rb	<i>R0</i>	Rн	ΚΓ
ЛМГЛ 20.20 ЛМГЛ 20.20М	2,0	123,8	973,6	1001,8	1019,0	1036,3	10,4
ЛМГЛ 20.25 ЛМГЛ 20.25М	2,5	123,8	973,6	1001,5	1019,0	1036,5	13,0
ЛМГЛ 30.25 ЛМГЛ 30.25М	2,5	89,6	997,0	1511,1	1528,6	1546,1	13,0

А.2.5 Крайние гребни волн должны располагаться с внутренней стороны готового элемента.

А.2.6 Окаймляющий уголок изготавливают из равнобокого уголка 45×45×4 по ГОСТ 8509 (см. рисунок А.5, таблица А.5). Длина заготовки должна быть равна 1575 мм. Допускаемые отклонения по длине не должны превышать плюс 2 мм, минус 5 мм.

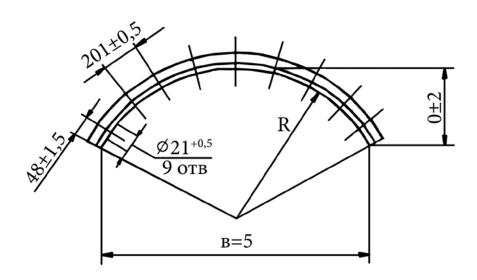
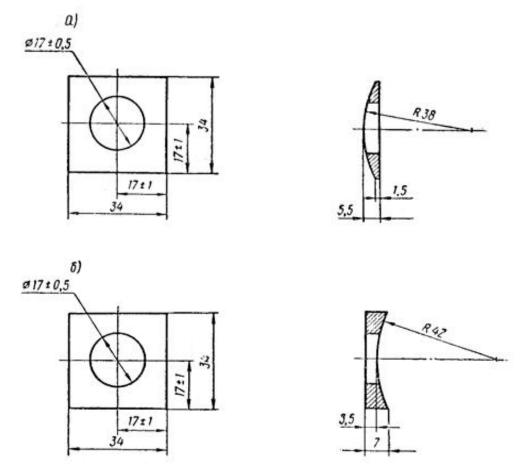


Рисунок А.5 – Окаймляющий уголок

Таблица А.5

Марка		Размеры, мм		Magaa KE
элемента.	а	b	R	Масса, кг
У 15	374,8	1304,4	754,8	4,3
У 20	291,8	1420,1	1009,5	4,3

А.2.7 Диаметр отверстий под болты продольного стыка (вдоль короткой кромки листа) должна быть равна 19 мм. Отверстия должны располагаться в шахматном порядке.


Допускается овальность отверстия после вальцовки. При этом наибольший размер не должен превышать (19 + 2,5) мм.

Отверстия под болты поперечного стыка располагаются в один ряд и имеют пазовое очертание размером 21×25 мм. Больший размер располагается вдоль гребня гофра.

А.2.8 Для поперечных и продольных стыков применяются стандартные болты диаметром 16 мм. Длина болтов назначается в зависимости отколичества и толщины соединяемых гофрированных листов, но должна быть не менее 35 мм.

Длина участка болта у головки не имеющая нарезки, должна быть меньше суммарной толщины стыкуемых элементов и шайб на величину от 2 до 3 мм.

A.2.9 Шайбы для болтов следует применять специальной формы: квадратные плосковыпуклые Ш1 и квадратные плосковогнутые Ш2 с массами соответственно $0.0291~\rm kf$ и $0.0350~\rm kf$ (см. рисунок A.6).

a) плосковыпуклая шайба (Ш 1); δ) плосковогнутая шайба (Ш 2) Рисунок A.6 — Шайбы

А.2.10 Все металлические элементы труб обозначают марками. Марка элементов состоит из одной буквы или группы букв и одной или двух групп цифр.

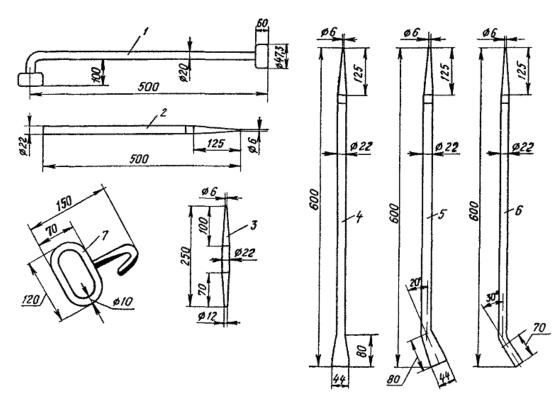
Буквы обозначают сокращенное название элемента, а цифры – диаметр трубы и толщину листа.

Пример условного обозначения (марки) листа металлического гофрированного для труб диаметром 1,5 м и толщиной металла 2,5 мм, предназначенного для эксплуатации в районах с расчетной температурой воздуха минус 40 °C и выше: ЛМГ 15.25.

То же, предназначенного для эксплуатации в районах с расчетной температурой воздуха ниже минус 40 °C: ЛМГ15.25М.

Пример условного обозначения (марки) уголка окаймляющего для труб диаметром 1,5 м: У15.

Приложение Б


(рекомендуемое)

Перечень основных машин, механизмов и инструмента для оснащения организации, строящей металлические трубы

Б.1 Рекомендуемые машины, оборудование и инструменты для устройства металлических гофрированных труб приведены в таблице Б.1.

Таблица Б.1

Наименование машин, инструментов	Количество
Экскаватор с ковшом емкостью 0,25 - 0,80 м ³	1
Бульдозер на тракторе мощностью 110 - 180 л.с.	1
Автокран грузоподъемностью 5 - 10 т	1
Автомобили-самосвалы грузоподъемностью 5-15 т	2
Автомобили бортовые	1
Прицепы для транспортировки секций труб	2
Компрессор производительностью 6 - 9 м ³ /мин	1
Насос для водоотлива (производительность определяется ППР)	1
Бетоносмеситель емкостью 0,2 - 0,5 м ³	1
Передвижная битумная установка	1
Окрасочный агрегат для нанесения грунтовки	1
Площадочный или ручной вибратор	1
Передвижная электростанция мощностью 10 - 15 кВт	1
Гайковерты электрические массой до 5 кг	2
Комплект ручных инструментов (ключи, ломики, крючок, оправка)	2
Грунтоуплотняющая машина на базе трактора для стесненных мест или	
полуприцепной самоходный пневмокаток массой 25 - 30 т	1
Электротрамбовки массой до 30 кг	2
Комплект ручных инструментов для нанесения защитного покрытия на	
стыки труб и устройства лотка	1
Комплект приборов для контроля плотности грунта	1

Б.2 Ручной инструмент для монтажа труб изображен на рисунка Б.1.

I - ключ торцовый (2 шт.); 2 - оправка (2 шт.); 3 - оправка (1 шт.); 4 - ломик (1 шт.); 5 - домир (1 шт.); 6 - ломик (1 шт.); 7 - крючки (4 шт.) (отгиб крючка выполнен в плоскости, перпендикулярной плоскости чертежа) Рисунок Б.1 - Ручной инструмент для монтажа труб

Б.3 Оборудование, приборы и инструменты, рекомендуемые при производстве работ по подготовке и нанесению дополнительного защитного слоя указаны в таблицах Б.2 – Б.4.

Таблица Б.2 – Подготовка поверхности

Наименование оборудования, инструментов	Технические данные
1. Аппарат дробеструйный	Производительность от 10 до 12 м ³ /час
2. Машина шлифовальная электрическая	Скорость вращения от 8000 до 10000 об/мин
3. Машина шлифовальная пневматическая	Диаметр проволочной щетки 100 мм

Таблица Б.3 – Нанесение защитного слоя

Наименование оборудования, инструментов	Технические данные
1. Установка безвоздушного распыления	Производительность от 7 до 10 л/мин
2. Установка высокого давления	Давление нагнетания от 20 до 25 МПа

Наименование оборудования, инструментов	Технические данные
3. Установка безвоздушного окрашивания	Максимальное входное давление 6,5 бар

Таблица Б.4 – Инструменты и приборы контроля

Оборудование	Марка	Технические данные
1. Вискозиметр	ВЗ-4 или ВЗ-246	Диаметр сопла 4,0 мм
		Вместимость 100 мл
2. Магнитный толщиномер	МТ-50 НЦ	Диапазон измерений от 50 до 2000 мкм
		Рабочая температура от 5 °C до 40 °C
3. Толщиномер	Минитест 1001	Диапазон измерений от 0 до 1250 мкм
		Рабочая температура от 0 °C до 50 °C

Приложение В

(обязательное)

Определение влажности и плотности грунта

В.1 Определение влажности и плотности грунта влагомером-плотномером Ковалева

В.1.1 Общие данные.

Прибор основан на принципе гидростатического взвешивания (рисунок В.1). Основные части прибора – поплавок и сосуд; вспомогательные – режущий стальной цилиндр (внутренний объем которого равен 200 см3, вес 123 г) с крышкой, стальная насадка, предназначенная для погружения режущего цилиндра в грунт, стальной нож и ведро-футляр с крышкой, закрывающейся двумя замками.

Поплавок предназначен для взвешивания испытуемой пробы грунта как без доступа воды, так и в водной среде. Режущий цилиндр с пробой грунта и надетой на него плоской крышкой помещается в крышку поплавка. При этом цилиндр устанавливают так, чтобы режущий край его был сверху, а незаточенный край с надетой на него крышкой снизу.

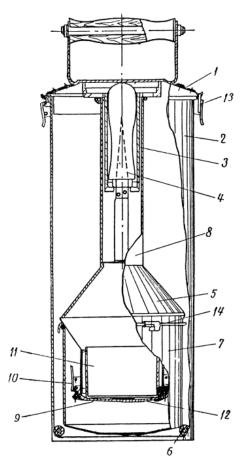
Сверху на цилиндр надевается поплавок так, чтобы его край вошел в паз крышки поплавка, где имеется резиновая прокладка. Замки на поплавке и крючки на крышке совмещаются и герметически закрывают поплавок. Для удлинения срока службы резиновой прокладки при хранении прибора поплавок и крышку держать отдельно.

Между дном крышки поплавка и крышкой цилиндра помещается тарировочный груз, представляющий собой металлические пластинки разной величины.

На трубке поплавка нанесены четыре шкалы показателей объемного веса грунтов. Шкала «ВЛ» служит для определения объемного веса влажных грунтов в диапазоне от 1,2 до 2,2. Шкалы «Ч», «П», и «Г» служат для определения объемного веса скелета (плотности) черноземных, песчаных и глинистых грунтов в диапазонах от 1,0 до 2,2. Каждое деление шкалы соответствует 0,01 г/см3.

Сосуд служит для размешивания пробы грунта в воде и взвешивания ее в воде при определении объемного веса скелета грунта.

Поплавок и сосуд соединяются между собой тремя крючками, припаянными к поплавку, и тремя штырьками, припаянными к сосуду.


Между соединенными поплавком и сосудом имеется зазор шириной 1-2 мм, через который при погружении в воду из сосуда свободно выходит воздух и поступает вода.

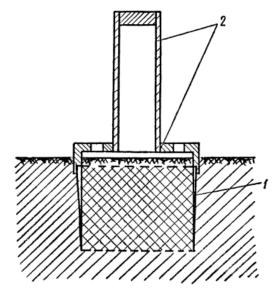
На дне футляра должно быть уложено резиновое кольцо, а на крышке иметься углубление для центровки и придания прибору устойчивого положения при упаковке и переноске.

В.1.2 Проверка прибора.

Перед началом работы прибора проверяют:

- вес режущего цилиндра, который должен быть равен (123±1) г;
- вес сосуда (272 ± 1) г (в воде 240 г);
- герметичность поплавка;
- поплавок (с присоединенным к нему сосудом и вложенным внутрь его режущим цилиндром, без грунта), который должен погружаться до начала шкалы «ВЛ» (1,2) и шкалы «Ч» (1), нанесенных на трубке. Если это условие соблюдается, то прибор пригоден для испытания. Незначительные отклонения уровня воды от этой черты регулируются снятием (если уровень воды выше черты) или добавлением (если уровень воды ниже черты) тарировочного груза, находящегося в крышке поплавка.

1 — крышка футляра; 2 — ведро-футляр; 3 — стальная насадка; 4 — нож; 5 — поплавок; 6 — резиновое кольцо; 7 — сосуд; 8 — трубка поплавка; 9 — крышка поплавка; 10 — замок, поплавка; 11 — режущий цилиндр; 12 — тарировочный груз; 13 — замок футляра; 14 — крючки


Рисунок В.1 – Плотномер-влагомер Ковалева

После проверки прибора производят контрольное определение объемного веса влажного грунта и влажности весовым методом. Проверку прибора и контрольное определение объемного веса и влажности весовым методом рекомендуется проводить не

реже 1 – 2 раз в месяц. Особое внимание следует обращать на состояние резиновой прокладки в крышке поплавка.

В.1.3 Определение объемного веса влажных грунтов.

Для отбора пробы грунта с ненарушенной структурой на поверхности грунта выравнивается площадка и на нее острым краем ставится режущий цилиндр. С помощью насадки цилиндр вдавливается в грунт вручную или молотком. Верхний край режущего цилиндра должен быть погружен на величину от 3 до 4 мм ниже поверхности грунта. Чтобы грунт при этом не уплотнялся, в насадке предусмотрено свободное пространство над цилиндром (рисунок В.2). За глубиной погружения режущего цилиндра в грунт наблюдают через отверстия в насадке.

1 – режущий цилиндр; 2 – насадка

Рисунок В.2 – Схема отбора проб грунта режущим цилиндром (прибор Ковалева)

Цилиндра с грунтом откапывают ножом и излишний грунт срезают по краям цилиндра. Наружную поверхность цилиндра очищают от грунта и цилиндр с грунтом и надетой на него крышкой помещают в крышку поплавка. На крышку сверху надевают поплавок и закрывают замки, после чего поплавок опускают в воду, налитую в ведрофутляр. Против уровня воды по шкале «ВЛ» берется отсчет объемного веса влажного грунта у.

Примечание — Если необходимо определить объемный вес рыхлого или текучего грунта, который не удерживается в поднятом режущем цилиндре, то при отборе пробы используется крышка поплавка. После того, как режущий цилиндр погружен в грунт, его верхнюю часть, расположенную снаружи освобождают от грунта. Избыток грунта срезают по верхнему краю цилиндра ножом и на цилиндр надевают крышку с плоским дном. Затем под режущий цилиндр с грунтом подводят нож, цилиндр вместе с грунтом опрокидывают так, чтобы крышка оказалась

внизу. В дальнейшем отобранную пробу выравнивают ножом по острому краю цилиндра, цилиндр и крышку очищают с наружной поверхности от грунта. Дальнейшее определение объемного веса влажного грунта выполняется описанным выше способом.

В.1.4 Определение объемного веса скелета грунта (плотности).

После определения объемного веса влажного грунта пробу переносят из режущего цилиндра в сосуд и заливают водой приблизительно на 1/2 емкости сосуда; грунт тщательно размешивают.

После того, как в воде не останется комков грунта, в сосуд доливают воду до 1/2-3/4 его объема. К сосуду присоединяют поплавок и сосуд с поплавком погружают в воду. Вода через зазор между поплавком и сосудом заполняет оставшееся пространство сосуда. По шкале «Ч», «П», или «Г», соответственно типу испытываемого грунта, отсчитывается объемный вес скелета грунта (плотности) γ_{ck} .

Если удельный вес грунтов более 2,72, можно $\gamma_{c\kappa}$ находить по шкале «Г» и полученный результат пересчитывать по формуле

$$\gamma_{cK} = \frac{0.63 \cdot \gamma_y \cdot \gamma'_{cK}}{\gamma_y - 1},$$
(Д. 1)

где: γ'_{ck} — объемный вес скелета, найденный по шкале прибора, г/см 3 ;

 γ_y – удельный вес грунта.

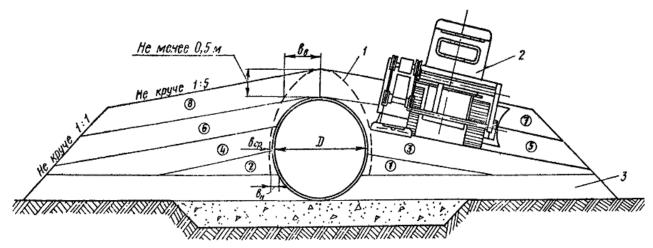
Полученное значение γ_{ck} будет истинным.

Д.1.5 Определение влажности грунта.

По найденному объемному весу влажного грунта γ и объемному весу скелета $\gamma_{\rm ck}$ влажность W рассчитывается по формуле

$$W = \frac{\gamma - \gamma_{\alpha x}}{\gamma_{\alpha x}} \cdot 100\%. \tag{A. 2}$$

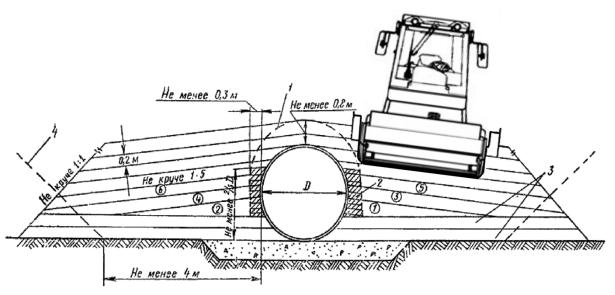
В.2 Определение плотности методом лунки


При использовании для засыпки труб крупнообломочных грунтов для контроля плотности применяют метод лунок.

Он заключается в том, что в грунте выкапывают лунку глубиной от 10 до 15 см с объемом от 3 до 5 л. Вынутый из лунки грунт взвешивают, а объем лунки замеряют, заполняя ее сухим песком из мерного сосуда. Разделив массу грунта, извлеченного из лунки, на его объем, находят объемную массу влажного грунта. Влажность грунта определяют высушиванием, а плотность – расчетом. В летнее время для определения объема лунки вместо песка ее можно заполнять водой, предварительно уложив полиэтиленовую прокладку.

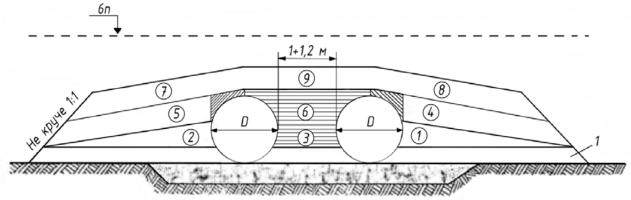
Приложение Г

(обязательное)


Технологическая последовательность и схемы послойного уплотнения грунта засыпки металлических труб

1, 2 и т.д. (в кружках) — номера слоев в технологическом порядке их отсыпки; 1 — контур максимального приближения рабочего органа машины к стенке трубы; 2 — виброударная грунтоуплотняющая машина; 3 — нулевой слой;

 $eta_{_{
m H}}$ и $eta_{_{
m cp}}$ — максимальные приближения рабочего органа к стенке трубы на разных уровнях, равные: для D=1 м $eta_{_{
m H}}=0.15$ м, $eta_{
m cp}=0.05$ м, $eta_{_{
m B}}=0.4$ м; для D=1.5 м $eta_{_{
m H}}=0.20$ м, $eta_{_{
m cp}}=0.05$ м, $eta_{_{
m B}}=0.5$ м; для D=2 м $eta_{_{
m H}}=0.30$ м, $eta_{_{
m cp}}=0.05$ м, $eta_{_{
m B}}=0.05$ м, $eta_{_{
m B}}=0.00$ м, $eta_{_{
m Cp}}=0.00$ м, $eta_{_{
m B}}=0.00$ м, $eta_{_{$


Рисунок Г.1 – Технологическая последовательность и схема послойного уплотнения грунта засыпки труб виброударной машиной для стесненных условий

1, 2 и т.д. (в кружках) – номера слоев в технологическом порядке их отсыпки;

1 — граница максимального приближения скатов катка к трубе; 2 — грунт, уплотняемый ручными механизированными трамбовками; 3 — нулевой слой; 4 — линии очертания границ торцов насыпи в случае устройства трубы в прогале

Рисунок Γ .2 – Технологическая последовательность и схема послойного уплотнения грунта засыпки труб пневмокатками

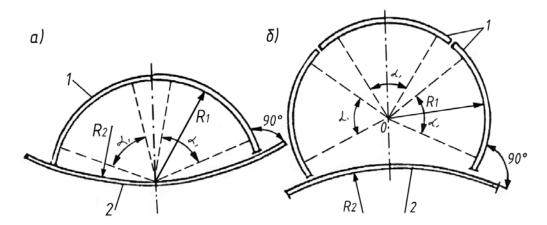

1, 2 и т.д. (в кружках) – номера слоев в технологическом порядке их отсыпки; ///////// – грунт над трубой, уплотняемый в процессе возведения следующего по высоте слоя; ===== – грунт, уплотняемый ручными механизированными трамбовками; I – нулевой слой

Рисунок Γ .3 – Технологическая последовательность и схема послойного уплотнения грунта засыпки многоочковых труб

Приложение Д

(справочное)

Схемы арочно-лотковых МГТ

a) из трех элементов; δ) из четырех элементов 1 – арочные элементы; 2 – лотковые элементы; R1 – радиус арочной секции трубы; R2 – радиус секции лотка; $\alpha 1$ – рабочий угол арочного элемента секции трубы; O – геометрический центр трубы

Рисунок Д.1 – Арочно-лотковые МГТ

Приложение Е

(обязательное)

Контролируемые параметры при устройстве и реконструкции металлических водопропускных труб

Е.1 Строительный контроль подрядчика

Виды контроля подрядчика и их состав приведены в таблице Е.1.

Таблица Е.1

Входной контроль	Операционный контроль	Оценка соответствия выполненных работ и конструкций совместно с заказчиком	
Контроль проектной документации	Освидетельствование скрытых работ	Оценка соответствия выполненных работ и конструкций, участков выполненных сетей	
Контроль применяемых строительных материалов	Освидетельствование ответственных конструкций		
Освидетельствование геодезической разбивочной основы	Испытания участков инженерных сетей и смонтированного оборудования Контроль выполнения и завершения строительномонтажных работ	Заключительная оценка соответствия законченного строительством объекта	

- Е.2 Контроль монтажа металлических конструкций трубы
- E.2.1 При входном контроле осуществляется проверка/оценка соответствия значений следующих величин:
 - а) длина листа ± 2 мм;
 - б) расстояние между центрами отверстий (образованных по шаблону с втулками):
 - 1) смежных ±0,7 мм;
 - 2) крайних в ряду ± 1 мм;
 - в) диаметры отверстий:
 - 1) до 17 мм + 1,0 мм;
 - 2) больше 17 мм +1,5 мм;
- г) отклонение радиуса гибки элементов (просвет между шаблоном длиной по дуге 1,5 м и поверхностью свальцованного листа):

СТО НОСТРОЙ 2.25.101-2013

- 1) в средней части ± 2 мм;
- 2) по концевым участкам ±6 мм.

Все элементы заводского изготовления, включая болты, гайки и шайбы, должны иметь сертификаты качества с паспортами и соответствующую ГОСТ 7566 маркировку.

На готовые трубы маркировка должна быть нанесена несмываемой краской на наружной поверхности на расстоянии от 200 до 250 мм от края трубы.

Е.2.2 Операционный контроль.

Отклонение внутреннего диаметра собранных или готовых труб от номинального значения должно составлять не более \pm 1,5 % диаметра.

Допустимые дефекты.

Небольшие погнутости отдельных элементов (чаще всего загибы углов) разрешается выправлять молотками. Во избежание повреждения цинкового покрытия удары надо наносить через деревянные прокладки. Такие же прокладки нужно укладывать под выпрямляемую часть элемента.

В элементах, изготовленных на заводе, с дополнительным защитным покрытием из эмали надо проверить его качество, а также сплошность покрытия и отсутствие механических повреждений.

Для контроля качества заводских элементов применяют:

- шаблон, представляющий собой сегмент с дугой, очерченный по радиусу трубы;
- магнитный толщиномер ИТП-1;
- складной метр по ГОСТ 427;
- рулетка по ГОСТ 7502.
- Е.3 Контроль защитного покрытия
- Е.3.1 Входной контроль.

Качество основного защитного покрытия следует оценивать визуально и инструментально. При внешнем осмотре покрытия следует убедиться в отсутствии трещин, бугров, вздутий, впадин и расслоений. Толщина покрытия должна контролироваться толщиномером по таблице А.4 (приложения А) через каждые 10 м трубы и не менее чем в четырех точках по окружности трубы, а также в местах, вызывающих сомнение.

Основные браковочные признаки по виду цинкового покрытия – это видимые трещины, забоины, крупная рябизна, большие наплывы цинка в местах стыков, темные пятна и места, не покрытые цинком.

Не подлежат браковке элементы с наплывами цинка шириной до 100 мм вне зоны отверстий, мелкими крупинками цинка до 0,5 мм, мелкой рябизной и небольшой шероховатостью поверхности, имеющие светло-серые пятна.

- Е.3.2 Оперативный контроль.
- E.3.2.1 Качество эмалевого защитного покрытия следует проверять по следующим показателям:
 - толщина покрытия должна соответствовать заданной в проекте;
- покрытие должно быть сплошным, ровным (без натеков) и не иметь отлипа, сорности и механических повреждений.

Толщину покрытия необходимо измерять магнитным толщиномером ИТП-1, сплошность проверяется дефектоскопом ЛКД-1.

Е.З.2.2 Качество битумного защитного покрытия (сплошность, целостность, отсутствие пузырей и отслоений) оценивается визуально, а толщина покрытия определяется непосредственными измерениями в местах надрезов. Для оценки сцепления битумного защитного покрытия с металлом трубы надо произвести пробный надрыв изоляции у края или у надреза по двум сходящимся под углом от 45° до 60° линиям. Адгезия (сцепление) считается достаточной, если при отрыве произойдет разрушение мастики. Отслоение изоляции с обнажением чистой металлической поверхности не допускается.

Сплошность дополнительного защитного покрытия трубы следует проверять дефектоскопом марки ДИ-64 или ЭД-4.

Е.4 Контроль при устройстве котлованов, оснований, подушек, противофильтрационных экранов и засыпки металлических водопропускных труб

Е.4.1 Входной контроль.

Качество и фракционный состав материалов основания и засыпки должен соответствовать требованиям 4.2.

Е.4.2 Операционный контроль.

При контроле выполнения земляных работ по устройству котлованов, оснований, подушек и противофильтрационных экранов следует обеспечивать выполнение требований пунктов 6.3.1-6.3.10.

Е.4.2.1 Устройство котлованов, оснований и подушек.

Контроль плотности дна котлована, основания и грунтовой подушки должен производиться под осью трубы через каждые 0,5 м (по высоте) с отбором не менее двух проб в каждой точке. Плотность песчаных грунтов следует контролировать прибором Ковалева (В.1, приложение В), щебеночно-галечных и дресвяно-гравийных – методом лунки (В.2, приложение В) в соответствии с ГОСТ 5180.

Е.4.2.2 Устройство грунтовой обоймы и засыпка труб.

СТО НОСТРОЙ 2.25.101-2013

В строительной лаборатории определяется объемная масса влажного грунта и его скелета (плотность). По известным объемной массе влажного грунта и плотности вычисляется влажность грунтов. Полученные значения плотности сравниваются с величиной максимальной стандартной плотности, вычисляется коэффициент уплотнения грунта. Естественная влажность грунта засыпки не должна отличаться от оптимальной больше чем на 10 %.

При использовании для засыпки труб крупнообломочных, щебеночно-галечных и дресвяно-гравийных грунтов применяют метод лунок (см. приложение В).

В непосредственной близости от конструкции (на расстоянии не менее 1,5 м) грунт обоймы должен быть уплотнен до коэффициента 0,98, в остальной зоне засыпки и грунтовой призмы – до коэффициента $\geq 0,95$.

Плотность грунта контролируется на горизонтах 0,25; 0,50 и 0,75 диаметра трубы по высоте с обеих сторон трубы на расстоянии 0,1 м и 1,0 м от боковых стенок в средней по длине части. Количество проб должно быть не менее двух в каждой точке.

В процессе отсыпки и уплотнения грунта следует контролировать диаметр трубы. Изменения ее горизонтального диаметра не должно превышать 3 % от проектного размера.

В случае не обеспечения требуемой степени плотности, характеризуемой коэффициентом уплотнения, засыпка должна быть приостановлена. Решение о дальнейшем производстве работ может быть принято комиссионно с участием представителей заказчика и проектной организации.

Е.4.3 Оценка соответствия выполненных работ.

Инструментальный контроль геометрических размеров подушек должен включать нивелирование продольного профиля подушки перед укладкой трубы, а также измерение рулеткой ее длины и ширины.

- Е.5 Контроль устройства лотков
- Е.5.1 Входной контроль.

Исходные материалы и готовые блоки лотков должны соответствовать требованиям 6.7.

Прочность бетона или асфальтобетона, его морозо- и влагостойкость определяются по данным лабораторных исследований.

Е.5.2 Операционный контроль.

В процессе работ контролируются требования 6.7. Качество работ оценивается визуально: проверкой отсутствия трещин, бугров, впадин, расслоений.

Приложение Ж

(обязательное)

Правила безопасности при устройстве и реконструкции металлических водопропускных труб

Ж.1 При устройстве и реконструкции металлических водопропускных труб все рабочие должны быть проинструктированы и обучены мерам безопасного ведения работ, которые они должны выполнять. По окончании обучения каждый рабочий должен сдать экзамен по проверке знаний, организованный главным инженером строительной организации. Результаты экзамена оформляются протоколом.

Ж.2 Запрещается осуществлять монтаж труб без полного комплекта необходимых инструментов.

Ж.З Запрещается находиться внутри трубы непосредственно под монтируемым элементом, а также устанавливать соединительные болты до фиксирования положения этого элемента не менее чем в двух точках. При перекатке смонтированной трубы или отдельных секций следует находиться только позади ее. Подъем полностью смонтированной трубы краном допускается только после затяжки всех соединительных болтов.

Ж.4 Битумоварочные помещения с оборудованием для варки битума и разогрева мастик должны быть удалены от огнеопасных строений, склада битума, гидроизоляционных материалов не менее чем на 50 м с учетом преобладающего направления ветра.

Ж.5 Емкости для разогрева битума должны загружаться не более чем на 3/4 их объема. Уровень битумной мастики в указанной емкости должен всегда быть выше зоны нагрева.

В период варки битума до 100 °C его пенообразование должно быть локализовано добавлением в него пеногасителя СКТП-1 или МКТ при тщательном и интенсивном перемешивании массы. Параметры пеногасителя представлены в таблице Ж.1.

Таблица Ж.1

Параметры пеногасителя	Нормативная величина	Соответствие
Плотность при 20 °C, г/см3	в пределах 840 – 850	по ГОСТ 18995.1
Температура вспышки в закрытом тигле, °C	в пределах 12 – 14	по ГОСТ 6356
Температура кристаллизации, °С	не выше минус 60	по ГОСТ 18995.5

СТО НОСТРОЙ 2.25.101-2013

Ж.6 В помещениях с емкостями для разогрева битума и приготовления мастик должен быть комплект противопожарного оборудования (огнетушители, лопаты и сухой песок).

Ж.7 При приготовлении мастик исходные нефтяные битумы и компаунды с температурой от 169 до 180 градусов Цельсия должны быть охлаждены до температуры от 80 до 90 градусов Цельсия и влиты в бензин (а не наоборот!). Эта операция должна сопровождаться тщательным перемешиванием грунтовки деревянными мешалками.

Ж.8 В случае воспламенения в емкости для варки битума (мастик) или в емкости для погружения гофрированных элементов гасить пламя следует сухим песком или огнетушителем. Запрещается гасить воспламенившийся битум (мастику) водой.

Ж.9 В битумоварочном помещении должна быть аптечка с необходимыми медикаментами и перевязочными средствами.

Библиография

[1]	ОДМ 218.2.001-2009	Рекомендации по проектированию и	
		строительству водопропускных сооружений из	
		металлических гофрированных структур на	
		автодорогах общего использования с учетом	
		региональных условий	
[2]	ТУ 2312-289-	Эпоксидно-каучуковая эмаль СНПХ- ЭПКЧ-	
	05765670-2002	700. Технические условия	
[3]	BCH 176-78	Инструкция по проектированию и постройке	
		металлических гофрированных водопропускных	
		труб. Минтранстрой СССР, МПС СССР	
[4]	ТУ-38-105874-75	Мастика полимерная УТ-38Г холодного	
		отверждения. Технические условия	
[5]	ТУ 14-6-83-72	Мастика битумно-бутилкаучуковая МББГ-70	
		горячего отверждения. Технические условия	
[6]	Отраслевой дорожн	ый методический документ. Методические	
	рекомендации по пр	именению металлических гофрированных труб.	
	Утверждено распоряжением Росавтодора № ОС-542-р от 17.06.2002 г.		
[7]	РД 24-СЗК-01-01	Стропы грузовые общего назначения на	
		текстильной основе. Требования к устройству и	
		безопасной эксплуатации	
[8]	BCH 40-88	Проектирование и устройство фундаментов из	
		цементогрунта для малоэтажных сельских	
		зданий.	
[9]	Технические условия	по применению металлических гофрированных	
	конструкций. М., 2009)r.	

OKC 93.080

Вид работ 25 по приказу Минрегиона России от 30 декабря 2009 г. № 624 Ключевые слова: металлические водопропускные трубы, устройство, реконструкция, автомобильные дороги